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Executive summary 

This deliverable shows how automatic or semi-automatic model transformation 

algorithms make it possible to propagate and explore the impact of changes in 

requirements, and present analytical reasoning techniques to assess the impact of 

changes on security properties. In particular the deliverable presents a qualitative and 
a quantitative reasoning technique on evolving requirements models. The qualitative 

technique is based on argumentation analysis that is adopted by the SeCMER 

methodology to analyze whether the design has exploitable vulnerabilities that might 
expose valuable assets to malicious attacks. The quantitative technique, instead, helps 

the designer to select a system design that is resilient to changing requirements. 

Moreover, this deliverable introduces the semi-automatic approach to requirements 

change management based on incremental graph patterns transformations that is part 
of SeCMER methodology. The reasoning techniques and the approach for 

requirements change management are illustrated based on the process level and the 

organizational level change requirements of the ATM case study.  

 
 Position of the deliverable in the project timeline 

The main artefacts of WP3 are the SeCMER conceptual model, the SeCMER 
methodology for changing requirements, and a CASE tool prototype that supports the 

different steps of SeCMER methodology. Considering the SecureChange project 

timeline depicted above, the SecMER conceptual model and the SeCMER 
methodology have been conceived during the M0-M24 timeframe, while the CASE tool 

is going to be developed during the M24-M36 timeframe. The reasoning techniques 

presented in this deliverable are part of the SeCMER methodology and thus belong to 
the timeframe M0-M24.   
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Validation 

The WP3 artefacts are SeCMER conceptual model, the SeCMER methodology for 

changing requirements, and a CASE tool prototype. Each of these artefacts is subject 

to the validation activities in SecureChange.  

The validation activities have not started yet and will be carried out during the third year 

of the project by organizing a dedicated workshop with ATM experts. For the purpose 
of the validation, we will use the process level change and the organizational level 

change and the security properties information protection and information access. WP3 

uses also the POPS case study, but to a lesser extent to illustrate the integration with 
testing (WP7). The change requirement that is addressed is specification evolution, 

and the security property is life-cycle consistency.  

 

Integration 

The strategic position of WP3 in terms of case studies and integration with technical 

artefacts of the other work packages is shown in the figure below. The ATM case study 

serves as the example for demonstrating the integration with artefacts of WP2, WP4, 
and WP5. The POPs case study is used for exemplifying the integration with artefacts 

of WP7. 
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WP3-WP2. The integration link between WP3 and WP2 is reported in D3.2 and D2.2. 

The integration is both at artefacts and at process level. The SeCMER conceptual 

model of the evolving requirements is a specialisation of the Requirement Model 
package of the Integrated Meta Model presented in D2.2, while the SeCMER 

methodology steps are an instantiation of the Overall Process. The integration is 

demonstrated based on the ATM case study, addressing the organization level change 

and the security properties of information protection. 

WP3-WP4. The integration link between WP3 and WP4 is reported in D3.2 and D4.2. 

The integration shows how UMLseCh can be used to help with verifying that 

requirements are actually met by a system and that they are complete with respect to 
high-level security objectives. The integration is demonstrated with the ATM case 

study, addressing the organization level change and the security properties of 

information protection and information provision. 

WP3-WP5. The integration link between WP3 and WP5 is reported in D3.2. The 

integration is both at conceptual level and at process level. At the conceptual level, an 

integration of concepts is presented and it is explained how requirement model 

artefacts should be mapped to risk model artefacts and vice versa. The process level 
integration leverages on the conceptual level integration for the integration of the 

requirements elicitation and risk assessment methodologies. The integration is 

demonstrated in the ATM case study, addressing the organization level change and 
the security properties of information protection and information provision. 

WP3-WP7. The integration link between WP3 and WP7 is reported in D3.2. The 

integration is both at conceptual level and at process level. At the conceptual level, an 
integration of concepts is presented and it is explained how requirements artefacts 

should be mapped to test artefacts and vice versa. At the process level, the integration 

of requirements methodology and testing methodology is described.The integration is 

demonstrated based on the specification evolution change requirement of the POPS 
case study.  
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1 Introduction 

Modern software systems become more complex and the environment where these 
systems operate in become more and more dynamic. The number of stakeholders 

increase and the stakeholders' needs change constantly as they need to adjust to the 

constantly changing environment. A consequence of this trend is that the average 
number of requirements for a software system increases and changes continually. 

To deal with evolution, it is important to have analysis techniques to assess the impact 

on the satisfaction of requirements. Beside reasoning on requirement satisfaction, it 
also necessary to evaluate  the impact of evolution on the security of the system: 

security properties satisfied before evolution might no longer hold or new security 

properties need to be satisfied as result of the evolution.  

Another important aspect about requirements evolution is the change management 
process. However, requirements evolution management is a major problem in practice. 

Requirements change continuously making the traceability of requirements hard and 

the monitoring of requirements unreliable. Furthermore, requirements management is 
difficult, time-consuming and error-prone when done manually. Thus, a semi-

automated requirements evolution management environment, supported by a tool, will 

improve requirement management with respect to keeping requirements traceability 
consistent, realizing reliable requirements monitoring, improving the quality of the 

documentation, and reducing the manual effort. 

 

 

Figure 1. An Overview of SeCMER methodology 
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In this deliverable we present a qualitative and a quantitative reasoning technique for 

evolving requirements models, and a semi-automatic approach to requirements 
change management that is based on incremental graph patterns and change driven 

transformations.  

The qualitative reasoning technique is introduced in Appendix A. It is based on 

argumentation analysis that is one of the steps of the SecMER methodology outlined in 
red in Figure 1. Arguments provide a way to structure the system artefacts involving 

the concepts in the SecMER conceptual model. The requirements engineer uses the 

SecMER requirement model to sketch informal arguments for the security goals of the 
system which will be affected by the proposed change. Goal, requirement and security 

goal are generally regarded as claims, context is the warrant, and propositions are 

facts. Other concepts such as action, actor, depends, provides relation, are orthogonal 
to the argument, in the sense that they can be used in the description of any part of an 

argument.The informal arguments and the formalized requirements are then used to 

generate arguments formalized in the Event Calculus. Two kinds of reasoning can be 

performed on the arguments: logical deductive reasoning to check whether claims in 
the arguments are valid, and logical abductive reasoning to find rebuttals to the claims.  

The qualitative analysis is presented in Appendix B. The analysis helps the designer to 

select a system design that is resilient to changing requirements. The reasoning is 
based on the representation of the evolution of a requirement model in terms of 

controllable and observable evolution rules. A controllable evolution rule represents an 

evolution that is under the control of the designer: the rule associates with a 
requirement model a possible design alternative.  An observable rule, instead, 

represents an evolution which is not under the control of the designer, but it can be 

somehow detected when it happened or whose future likelihood can be estimated with 

a certain confidence of the stakeholder. Thus, an observable evolution rule associates 
with a requirement model a possible requirement model to which the model can evolve 

with a certain probability. The probability of occurrence of an observable rule is 

determined based on a game-theoretic approach which involves the stakeholder, the 
designer and the reality. Based on the representation of an evolving requirement model 

as a set of controllable and observable rules, it is possible to compute two quantitative 

metrics called maximal belief and residual risk that intuitively measure the usefulness 

of a model element (or a set of elements) after evolution.  In fact, the maximal belief 
tells whether a design alternative is useful after evolution, while residual risk quantifies 

if a design alternative is no longer useful. Based on these two metrics, a designer can 

thus determine the system design that is resilient to changes in requirements. The 
system design should consist of the design alternatives that have a high maximal belief 

and a low residual risk.  

Appendix C introduces change-driven transformations. SeCMER methodology 
leverages on incremental model transformation technology and change-driven 

transformation based on evolution rules to check argument validity, to automatically 

detect violations or fulfilment of security properties, and to issue alerts prompting 

human intervention, a manual analysis / argumentation process, or potentially trigger 
automated reactions in certain cases. Change-driven transformation can also be used 

to synchronize requirements models based on the SecMER conceptual model with  

models in different requirements formalisms.  
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We illustrate the reasoning techniques and the approach for requirements change 

management based on the ATM case study.  

 

The report is organized as follows. 

 

In Section 2 we illustrate how argumentation analysis introduced in APPENDIX A can 
be leveraged to analyze the changes in requirements models. In particular, we 

illustrate how argumentation analysis is used to determine that after the introduction of 

Arrival Manager (AMAN), and of the IP communication network, the security property 
“Information Protection” for Flight Data Domain information no longer holds, and the 

addition of new security properties that need to be satisfied by the requirement model 

is required. 

&
Section 3 shows how the maximal belief and the residual risk metrics can be applied 

to assess the design of the Arrival Manager (AMAN) that regards the authentication 
process for the Sequence Manager and the air traffic controllers  who have access to 

the information generated  by the AMAN. 

 

Finally, in Section 4 we show how incremental transformations and change-driven 
transformations are used by the SeCMER methodology to manage evolution of 

requirements. We provide examples of evolution rules that are applied to detect 

arguments that are no longer valid, security properties violations, and synchronization 
of different model‘s views for the process level change requirement of the ATM case 

study.    

 

Appendix A presents the argumentation analysis. Appendix B proposes the 
quantitative analysis, while the Appendix C introduces change driven transformations. 
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2 APPLICATION OF ARGUMENTATION 
ANALYSIS TO ATM CASE STUDY  

This section is based on paper [1], which proposes a meta-model of evolving security 

requirements. The meta-model draws on requirements engineering approaches, 

security analysis, argumentation and software evolution. The meta-model is 
instantiated using a formalism of temporal logic, called the Event Calculus. The 

approach to argument analysis is supported by a plug in for the OpenPF tool, which 

generates templates for formal descriptions. 

The paper [1] and the SeCMER methodology discussed in D3.2 are closely related, in 
particular with respect to the requirement meta-model and the use of argumentation. 

2.1 Relationship between ESR meta-model and 
SeCMER ontology 

This section discusses the relationship between the Evolving Security Requirements 

(ESR) meta-model used in our work in [1] and the SeCMER conceptual model 
presented in D3.2. The general relationship between the two models is that the 

SeCMER conceptual model is a simplification and clarification of the ESR meta-model.  

The ESR model is particular geared towards the description of the security 
requirements using the temporal logic formalism, the Event Calculus and 

argumentation. As far as the requirements engineering concepts are concerned, it 

makes use of the notions such as anti-requirements and specifications. In that sense, 

the meta-model is geared towards the Problem Frames concepts.  

The SeCMER ontology simplifies the ESR meta-model by removing concepts related 

to the argumentation and temporal logic, and by generalising Problem Frames and i* 

concepts, and extending them. Therefore, the notions of goal and actor are more 
prominent. 

For a more detailed discussion of the ESR meta-model and the SeCMER ontology, 

please refer to Section IV of [ 1] and Section 2.1 of D.3.2 respectively. 

2.2 Using Argumentation: The ATM Case Study 

We illustrate argumentation analysis based on the process level change requirement 

and the information access and information protection properties. The scenario 
fragment we are going to consider is the transmission of FDD data to the AMAN via the 

new communication network, denoted as SWIM. We want to focus on how to enforce 

access control policies on FDD transmission   and how to ensure confidentiality of 
FDD.  In terms of security means, we show the SeCMER models before and after 

changes of introducing the AMAN tool and the communication network, and the 

argumentation analysis for the security goal of protecting FDD from malicious attack. 
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Following the SeCMER approach, we will begin by describing the structure of the 

system before the change (2.2.1). We then show how the structure is affected by the 
change, whilst indicating the security property that needs to be maintained after the 

change (2.2.2). Arguments for why the system was secure before the change, and how 

it may or may not be secure after the change is developed (2.2.3). We then use the 

mitigations for rebuttal to derive additional security properties that need to be 
discharged to maintain the security after the change is introduced (2.2.4). 

2.2.1 The Structure of ATM system before the change 

Figure 2 shows a SeCMER requirement model fragment capturing structure of the 
ATM system before the introduction of AMAN and SWIM. The model captures the 

given domains and their connections as they currently are in ATM domains. The 

diagram shows that the Airport Management is connected to the Meteo Data Center 

and the Area Control Centre through interfaces ‘a’ and ‘b’ respectively.  ‘a’ and ‘b’ are 
point-to-point communication systems. The main security goal is “Protection of flight 

data domain information”. 

&

Figure 2. A SeCMER requirement model capturing the relevant domains before the changes 

2.2.2 The Structure of ATM after the change 

Figure 3 shows the SeCMER requirement model showing how the introduction of the 
SWIM Network, an IP based data transport network, changes the structure of the ATM 

components, together with a simple description of the interfaces between the 
components. In the after change diagram, the two specific legacy systems, namely, 

Airport Management and Meteo Data Center are connected through the SWIM 

network. This change, in a sense, replaces the interface ‘b’ with the SWIM network, 
SWIM boxes and adapters. The diagram also makes explicit the security goal 

“Protection of flight data domain information”& that needs to be maintained after the 

change has been introduced. 
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&

Figure 3. A SeCMER requirement model capturing the relevant domains after the change 

2.2.3 Argumentation Analysis of change 

The structured models allow us to analyze the impact of the changed requirements. 

This allows us to discuss and communicate relevant changes to requirements with 
domain experts. Figure 4 shows a fragment of the SeCMER argument model for the 

introduction of the AMAN and the SWIM network. Notice that the changes made to the 

requirement models are reflected by the addition of rebuttals and mitigations in various 
rounds. In that sense, the changes are recorded in structured way in arguments.  

&

Figure 4. A fragment of a SeCMER argument model 

The diagram shows that the AMAN system is claimed to be secure before the change 

(Round #1), and the claim is warranted by be the facts the system is known to be a 

close system (F1), and the physical location of the system is protected (F2). This 
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argument is rebutted in Round #2, in which another argument claims that the system is 

no longer secure because SWIM will not keep AMAN closed. The rebuttal argument is 
mitigated in Round #3 by three arguments, which suggest that the AMAN may still be 

secure given that the physical infrastructure is secure, personnel are trustworthy and 

access to data is controlled. 

2.2.4 Additional security property as a result of 
change 

Having done the argument analysis, we discovered that the original requirement for 
system security, which is the protection of FDD (Flight Data Domain) info, cannot be 

maintained after the change has been introduced. The introduction of the AMAN and 

the SWIM Network requires additional security properties. Mitigations in the arguments 
led to discovery of these additional security properties, relating to the physical 

infrastructure, personnel and access control that need to be discharged in order to 

maintain the overall system security.  

Figure 5 shows the after SeCMER requirement model displayed in Figure 4 where one 

of the additional security property relating to access control has been added. They 
include: ‘Queue Management Information shall not be accessible by meteo data 

centres’, or ‘Queue Management Information shall not be accessible by anyone other 

than those working with AMAN’. The structured SeCMER’s argumentation supports the 

verification of such additional properties. 

&

Figure 5. A SeCMER requirement model for a relevant Security Property with respect to Changes 

 

2.2.5  Formalization of the argument using the Event 
Calculus 

We now illustrate how the initial argument for the system security for the running ATM 

example is broken, by generating counter-examples in the Event Calculus using the 



 

 D.3.3 Algorithms for Incremental Requirements Models 
Evaluation and Transformation| version 1.9 | page 17/33 

!

abductive reasoning of OpenPF. Our discussion will focus on the protection of FDD 

data of the Airport Management system.  

Since we assumed that the existing system before the change is secure, in particular, 

the FDD data is initially protected. In the event calculus, we will write:   

!HoldsAt(Accessed_FDD_data_SN(),0). 

For the current system, this property can easily be proven. What is of interest is to 

check whether the property remain true after the change has been introduced. To do 

this, we input the diagram in Figure 4 into OpenPF. We the follow the steps discussed 
in the sections IV and V of Appendix A. Figure 6 shows the textual input to create the 

diagram in Figure 5. 

&

Figure 6. Textual input to create the diagram in Figure 5 

In the next step, we generate the diagram shown in Figure 4. We then invoke an 
OpenPF plug-in that generates the Event Calculus template for the above diagram. A 

partial template is shown in Figure 7. 
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&

Figure 7. The Event Calculus template generated by the OpenPF tool from Figure 6 

In the next step, we describe the behaviour of the domains in Figure 4. For instance, to 
say that the Adapter B instantly forward FDD data from the Airport Management (via 

interface f) to the SWIM-Box B (via interface e), we write: 

[time] Happens(Send_FDD_data_8101_e(),time+1) <-> 

Happens(Send_FDD_data_7777_f(),time). 

Similarly, to say that the SWIM-Box B instantly publishes the information to the SWIM 
Network (via interface d) when it receives FDD data from the Adapter B (via interface 

e), we write: 

[time] Happens(Publish_FDD_data_d(),time) <-> Happens(Send_FDD_data_8101_e(),time). 

When the FDD data is published with the SWIM Network, the SWIM Network has the 

FDD data. 

[time] Initiates(Publish_FDD_data_d(), Has_FDD_Data_SN(),time). 

If SWIM-Box A has subscribed to the SWIM Network, and if the SWIM Network has the 
SWIM data when SWIM-Box A attempts to get it, then the FDD data has been 

accessed. This is described by the following rule.  



 

 D.3.3 Algorithms for Incremental Requirements Models 
Evaluation and Transformation| version 1.9 | page 19/33 

!

[time,time1] Happens(Subscribe_SWIM_data_c(),time1) & (time1 < time) &  

HoldsAt(Has_FDD_Data_SN(),time) ->  

Initiates(Get_SWIM_data_c(), Accessed_FDD_data_SN(),time). 

Requests by Airport Management and Meteo Data Center for FDD data and Meteo 

data can be described in the same way. 

In the next step, we invoke the abductive reasoned the OpenPF tool to see if the 

security property !HoldsAt(Accessed_FDD_data_SN(),0) has been broken. The 

reasoner returns the two models shown in Figure 7. The first model says that the 

security property Accessed_FDD_data_SN() will become true, i.e. the security is 
broken, if the Airport Management publishes FDD data to the SWIM Network to which 

the Meteo Data Center has subscribed for FDD data. The FDD data available to the 

Meteo Data Center may be outdate because the Airport Management has published 
more FDD data since the Meteo Data Center has requested it. The second model is 

similar to the first: the difference being that the FDD data is most up-to-date. 
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&

Figure 8. Results of the abductive reasoning on the change 

&
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3 HOW TO CHOOSE A SYSTEM DESIGN  
RESILIENT TO EVOLVING 
REQUIREMENTS 

In this section we show how we can compute maximal belief and residual risk metrics 

by using the organizational level change requirement of the ATM case study as 

illustrative example. The maximal belief and residual risk, intuitively, indicate if a set of 
design alternatives is going to be useful after requirements change. The Organizational 

Level Change introduces changes both at process and at organizational level.  At 

organizational level, the AMAN supports the Sector Team by providing sequencing and 
metering capabilities for a runway, airport or constraint point, the creation of an arrival 

sequence using ‘ad hoc’ criteria, the management and modification of the proposed 

sequence, the support of runway allocation at airports with multiple runway 

configurations, and the generation of advisories for example on the time to lose or gain, 
or on the aircraft speed. The Sector Team consists of two Air Traffic Controllers 

(ATCOs), namely the Tactical Controller (TCC) and the Planner Controller (PLC). The 

Sector Team is responsible for managing the air traffic of an allocated sector of the 
airspace. 

The introduction of the AMAN requires the addition of a new type of ATCO, called 

Sequence Manager (SQM), who will monitor and modify the sequences generated by 
the AMAN and will provide information and updates to the Sector Team.  

Due to the introduction of the AMAN, there is the need for an Identity and Key 

Management Infrastructure (IKMI) to support the authentication process for the 

different ATCOs who have access to the information generated by the AMAN.  

Let assume that the requirement model for the Organizational Level Change (denoted 

as RM1) states that the following requirement needs to be satisfied: 

• R1 : Manage keys and identities of system entities (human, software, devices 
etc).  
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Figure 9. Examples of Evolution of requirement model RM1 

 

The evolution of requirement model RM1 is described by a set of controllable and 
observable evolution rules where a controllable rule associates with RM1 a possible 

design alternative.  An observable rule associates with RM1 another requirement model 

to which RM1 can evolve with a certain probability. rc  is the set of controllable rules for  

RM1 that state that RM1 can be fulfilled either by design alternative A, design alternative 

B1, design alternative B2, or  design alternative B3.  

                         rc  = { RM1 ! A, RM1 ! B1, RM1 ! B2, RM1 ! B3} 

 

                              ro = { RM1 ! RM1, RM1 ! RM2, RM1 ! RM3} 

 

ro is the set of observable rules that state RM1 can evolve to a requirement model RM2 
with a probability of 42%, or to a requirement model RM3 with probability 46% or it can 

remain unchanged with probability 12%.  RM2 is a requirement model that requires the 

satisfaction of the following requirements: 

• R1 : Manage keys and identities of system entities (human, software, devices 

etc).  

• R2 : Support a robust IKMI that can be scaled up to large number of application 
and users; 

 

while RM3 is a requirement model which  requires the satisfaction of the following 

requirements: 

• R1 : Manage keys and identities of system entities (human, software, devices 

etc).  

• R2 : Support a robust IKMI that can be scaled up to large number of application 
and users; 

ABC& DBC& DEC&
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• R3 : Single Sign-On (SSO) support. 

 

Figure 9 illustrates the evolution of RM1  as modelled by the set of controllable and 

observable rules. Each requirement model is represented as a bubble in which there is 

a controllable rule with several design alternatives. Each design alternative is an 

element set represented as a rounded rectangle that contains elements (such as A, B1, 
and B2) which fulfil the requirements within that requirement model.  Table 1 

summarizes the possible design alternatives that implement requirements R1, R2, and 

R3.  

 

Identifier Design alternative Requirement  

A Simple IKMI R1 

B1 OpenLDAP based 
IKMI 

R1,  R2 

B2 Active Directory 

based IKMI 

R1, R2, R3 

B3 Oracle Identity 
Directory based 

IKMI 

R1, R2, R3 

C 

 

Ad-hoc SSO R3 

 

Table 1. Model elements fulfilling requirements 

Table 2 reports the value of maximal belief and residual risk:  the first column displays 

design alternatives sets, and the two next columns show the values of maximal belief 

and residual risk. Notice that the maximal belief and residual risk in the first row, where 
the element set is {C} is n/a which means that there is no evolution where the set  {C}  

fulfils all the requirements R1, R2, and R3.  

 

Model Element 

Set  

Maximal Belief Residual Risk 

{C} n/a n/a 

{A} 12% 88% 

{B1} 42% 46% 

{B2} 46% 0% 

{B3} 46% 0% 

{B1, C} 46% 0% 

 

Table 2. Examples of Max Belief and Residual Risk  
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Looking at the table we can conclude that {B2}, {B3} and {B1, C} seem to be the best 
design alternatives, since they have a high maximal belief 1(46%) and low residual risk2 

(0%) which means these element sets are surely still useful after evolution. Thus, a 

system design that is resilient to the evolution of RM1 should include design alternative 

B2, design alternative B3, or design alternatives B1 and C. 

 

 

 

 

 

 

 

 

 

 

&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&
A&Maximal belief denotes that a design alternative is useful after evolution.&&

2
 Residual risk denotes that a design alternative is no longer useful after evolution. 
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4 APPLICATION OF CHANGE-DRIVEN 
TRANSFORMATIONS TO SECMER AND 
ATM CASE STUDY 

4.1 Overview 

Thanks to Evolution Rules, our proposed SecMER tool environment can take 

advantage of incremental model transformation technology and change-driven 

features, including: 
• argument validity maintenance, where a previously conducted formal or 

informal argumentation can be invalidated by changes affecting model 

elements that contributed to the argument as evidence; 

• automated detection of violations and fulfilment, where some security-
related properties and undesired situations are formally defined and 

incrementally evaluated, to issue alerts prompting human intervention, a 

manual analysis / argumentation process, or potentially even automated 
reactions in certain cases; 

• incremental model synchronization, where different domain-specific views of 

an abstract integrated model are incrementally kept synchronized using 
change-driven model transformation, such as different security requirement 

formalisms and the unified SecMER requirement model.  

The key capability is the automated change-driven reaction mechanism of Evolution 

Rules. For design-time modification of the models, these reactions can be executed 
on-the-fly using incremental model transformation techniques. Alternatively, off-line 

editing of models and later change reconciliation is also possible. Likewise, various 

change scenarios can be supported transparently with the same declarative definition 
of Evolution Rules. The foundations of this versatility of the proposed change-driven 

approach are explained in APPENDIX C. 

As envisioned in D.3.2., evolution rules can be defined and refined at two stages of 
the development process at least. Some rules are expected to be defined a priori, 

when the engineering process is set up, relying on general domain knowledge or a 

domain-agnostic library of evolution rules. New rules can be defined and existing rules 

can be refined during the engineering process itself; adapted to the stakeholder needs, 
internal policy, and system-specific experience gathered; emerging as the result of 

manual decisions, e.g. in the argumentation part of the methodology. The integration of 

Evolution Rules into the methodology is presented in Section 7.2 (“Application of 
evolution rules in SeCMER”) of D.3.2.  
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4.2 Example model 

We now briefly introduce a heavily simplified ATM requirements model that will be used 

below for explanatory examples. The model is visualised here by the Si* graphical 

syntax (Figure 11), as well as the textual format of the SecMER metamodel (Figure 10).  
The entities involved in the simple scenario used for this example are the AMAN, the 

Meteo Data Center (MDC), the SWIM-Box and the SWIM-Network. The SWIM-Box is 

the core of the SWIM information management system which provides access via 
defined services data that belong to different domain such as flight, surveillance, 

meteo, etc. 

The introduction of the SWIM requires many security properties to be satisfied which 
prevent corruption, accidental or intentional loss of data and guarantee the integrity 

and confidentiality of the aircraft sensible data against malicious attacks or intrusions. 

Here we will focus on information access (access control) and information protection 

(e.g. integrity) properties on the requirements level. In particular, we will show how to 
ensure integrity of FDD data by using digital signature or a trusted communication 

path.   

As exploring design alternatives is inherent to the methodology, we will also show how 
a cheaper alternative is investigated after the default option of the planned change. 

One of the elements in the model will be modified to represent the second alternative, 

demonstrating how the analysis is adapted to the new situation. Note that even though 
technically the model is modified for a second time, the whole engineering session 

revolves around a single evolution of the system. 

In the post-state model we are investigating here, the two main actors are AMAN and 

MDC, no longer interfacing over a direct connection. MDC provides the asset Meteo 
Data (MD) which is sent to AMAN, but the communication is indirect: MD is first given 

to the SWIM-Box of MDC, which moves it to the SWIM network, from there it is 

propagated to the SWIM-Box of AMAN, and AMAN retrieves MD from there. AMAN 
has a security goal MDIntegrity requiring the integrity of MD, and MDC is trusted to 

comply with this security requirement, but the rest of the actors are not yet trusted. A 

second security goal, MDAccessControl (corresponding delegation and trust 

relationships omitted from the model) is investigated by an argument carried out by 
experts. AMAN also performs an Action, SecurityScreening, to regularly conduct a 

background check on its employees to ensure that they do not pose a risk of internal 

compromise; this Action is used in the argument as a ground Fact.  
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Figure 10. ATM evolution pre-state in SecMER concrete syntax 

 

 

Figure 11. ATM evolution post-state on Si* diagram 
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4.3 Argument validity maintenance 

Formal and informal argumentation is carried out using the SecMER requirements 

model, to determine which security goals are met. Argumentation is a laborious and 

costly process requiring significant human expertise. In security-critical applications, it 
is important to avoid carrying out the argumentation workflow for every single security 

goal after each insignificant change to even remote parts of the model. 
Our assumption is that the argumentation model relies on facts, some of which are 
grounded in the model. Traceability is required between facts used in argumentation 

and the requirements model elements corresponding to these facts. This traceability 

mapping enables automated mechanisms to detect changes that are inflicted upon 
these model elements corresponding to ground facts. Even if an argumentation was 

previously carried out, such changes can influence the validity of the argument, and it 

would have to be revisited.  

We propose establishing a set of Evolution Rules that would flag such arguments as 
invalid and request argumentation analysis. The key difference between each of these 

rules is the guard Graph Change Pattern (GCP, defined in D.3.2.) defining the Event 

and Condition part of the rule. The recommended strategy is to identify types of 
changes that warrant a re-evaluation of the argument, and define an evolution rule for 

each of them. 

To aid in building Evolution Rules and GCPs, some auxiliary Graph Patterns are 
defined first. Graph Pattern factOfValidArgument(A,F)captures an Argument A that 

has not been invalidated, and a Fact F that is listed as a ground fact for A. Graph 

Pattern factMentionsElement(F,M)captures the traceability relationship between a 

Fact F and a model element M of the integrated model, that is “mentioned” or used in 
the fact statement as an evidence. 

The Evolution Rule invalidateUponElementDeletion() is activated when a model 

element mentioned in a Fact is deleted. The rule is guarded by a GCP that contains a 
disappearance query of factMentionsElement(F,M) linked to a match of 

factOfValidArgument(A,F). The following code sample shows an initial version of 

this rule in simplified syntax: 

change pattern factEvidenceDeleted(A,F,M) { 

 find factOfValidArgument(A,F); // static condition 

 disappear factMentionsElement(F,M); // event: element disappeared! 

} 

evolution rule invalidateUponElementDeletion(A,F,M){ 

 guard factEvidenceDeleted(A,F,M); 

 action { 

  call flag_as_invalid(A); 

 } 

} 

As an example for the application of this evolution rule, suppose the argumentation 

analysis described in Section 2.2 has already been conducted. This means that 

Mitigation A (“SWIM personnel are trustworthy”) and its underlying Fact F (“People 
working with SWIM data will be vetted”), both shown in Figure 4Error! Reference 
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source not found., constitute a match(A,F) of the Graph Pattern 

factOfValidArgument(). At the same time, this Fact is linked by inter-model 
traceability to its evidence M in the requirements model, namely the Action “Security 

Screening” carried out by AMAN. The Fact and the Action together form a match(F,M) 

for the Graph Pattern factMentionsElement(). If an evolution deletes this Action (e.g. 

the SWIM operator is planning to cut costs), the match of factMentionsElement(F,M) 
will disappear, making (A,F,M) a match of the change pattern and activating the 

Evolution Rule. The rule will flag the Mitigation argument for re-evaluation; 

argumentation experts will be alerted to revisit the argumentation and decide whether 
the top-level Claim (“The AMAN system is secure”) can still be considered true. 

To avoid triggering the rule where a mistakenly created “fact mentions model element” 

relationship is retracted, the GCP should be improved further. For example, an 
additional disappearance query can be used to ensure that the model element M is in 

fact deleted. 

The Evolution Rule invalidateUponAttributeChange() is proposed to activate 

when an attribute of a model element mentioned in a Fact is updated. The rule is 
guarded by a GCP that contains an attribute update query of an arbitrary attribute of 

model element M, with M involved in a match of factMentionsElement(F,M) that is 

linked to a match of factOfValidArgument(A,F). Although attribute update queries 
are omitted from D.3.2 for sake of brevity, they are discussed in detail in [3]. An 

example use case for this rule would be a moderate budget cut where the SWIM 

operator down scales the quarterly security screening to a once-a-year frequency; the 
rule flags the corresponding mitigation for re-evaluation, and argumentation experts will 

have to decide whether the looser security policy is enough to support the root claim. 

Additional similar Evolution Rules can be created depending on system-specific 

policies; for instance the argument should be invalidated if a model element mentioned 
in a fact is of a certain type, and edges of certain types are connected to (or 

disconnected from) it. 

Finally, invalidity should be propagated upwards in the argumentation tree. The 
Evolution Rule propagateInvalidatation() is proposed to activate when a sub-

argument (through nesting or linking) is invalidated. Further optimizations are possible, 

e.g. an invalidated rebuttal does not invalidate an argument, but an invalidated 

mitigation of the rebuttal does. 

4.4 Automated detection of violations and 
fulfilment 

We claim that in certain scenarios, the formal approach and (first-order) expressivity of 

Evolution Rules is sufficient to detect various kinds of failures or integrity validation in 

formal models such as the requirements model. Conversely, these techniques may be 
enough in some cases to determine that a certain security property is met. 
Recalling that Evolution Rules are defined using Graph Patterns to capture static or 

dynamic parts of the model, the general strategy is to compose graph patterns that 
capture desired or undesired situations, and to establish Evolution Rules to react on 

them. The proposed underlying technology supports the incremental evaluation of 

these conditions. 
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Some examples have already been introduced in D.3.2. Here we show additional rule 

templates (and constituent graph patterns) to demonstrate the power and applicability 
of the approach.  

One useful Graph Pattern called fulfilledGoal()captures a desired situation where 

a security goal is known to be fulfilled by an explicitly specified action. The pattern 

consists of Actor A that wants a security goal SG that is fulfilled by Action X performed 
by Actor B; while at the same time A delegates the SG to B and also trusts B over the 

SG. The applicability of this pattern can be improved by increasing its complexity, e.g. 

taking into account the fulfilment of a decomposed goal through constituent goals, and 
of course considering the case when an Actor fulfils a Goal herself (A=B). 

pattern fulfilledGoal(A,SG,X) { 

find want(A,SG); 

 find securityGoal(SG); 

 find fulfil(X,SG); 

 find carryOut(B,X); 

 find delegate(A,B,SG); 

 find trust(A,B,SG); 

} 

A second proposed graph pattern called assetLeak()captures an undesired situation 

where an asset that should be protected is handed over to an actor without trust. The 
pattern consists of an Actor A that wants a Security goal SG that protects asset S; 

while at the same time S is delegated (by A or another actor) to an actor B that is not 

trusted by A over S.  

pattern assetLeak(A,B,SG,S) { 

find want(A,SG); 

 find securityGoal(SG); 

 find protect(SG,S); 

 find delegate(_,B,S); 

 negfind trust(A,B,S); 

} 

Depending on process-specific policies, a meaningful Evolution Rule could be 

alertUnfulfilledGoal() as described in the following. Security engineers are 
alerted to a problem with a security goal SG, whenever a new match of the graph 

pattern unfulfilledGoal() emerges. The latter pattern holds for Security goal SG if 

SG is not supported by an argumentation that is marked as valid, and furthermore 

either assetLeak() holds for SG and some Asset S, or there is no action X such that 
fulfilledGoal()holds for SG and X. The Evolution Rule is triggered when this 

undesired pattern appears, regardless what kind of evolution caused it: a change 

introducing a new security goal (to which no explicit fulfilment relationship is connected 
yet), a change where the Action no longer fulfils the Security goal, a change where an 

asset becomes leaked (due to a new delegation or a revoked trust relationship), or a 

change where an existing argument is marked as invalid (possibly automatically by 

Evolution Rules described in Section 4.3). 

pattern unfulfilledGoal(A,SG) { 

find want(A,SG);  
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 find securityGoal(SG); 

 neg find validArgumentSupports(_Arg,SG); 

 find assetLeak(A,B,SG,S); 

}or { 

find want(A,SG); 

 find securityGoal(SG); 

 neg find validArgumentSupports(_Arg,SG); 

 neg find fulfilledGoal(A,SG,_X); 

} 

evolution rule alertUnfulfilledGoal(A,F,M) { 

 guard appear unfulfilledGoal(A,SG); 

 action {  

  call raise_alert(A,SG); 

 } 

} 

In the ATM scenario, the running example for evolution triggers this rule in the following 
way. Actor MDC (“Meteo Data Center”) provides Asset MD (“Meteo Data”). Initially, the 

asset is delegated directly to AMAN. The change replaces the direct connection with 

the SWIM Network, and a separate Swim Box each of for MDC and AMAN. MD is 
communicated (delegated) by MDC to its SWIM box, that delegates it to SWIM 

Network, that in turn delegates MD to the SWIM Box of AMAN, and finally it is 

delegated to AMAN. Before any trust edges are introduced, delegating MD to the 
various actors in the communication chain constitutes a leak. As now the security goal 

MDIntegrity protecting MD is made uncertain by the leak of MD, and there is no 

argument to support MDIntegrity by explicitly explaining why the situation is fine 

nevertheless, the rule alertUnfulfilledGoal()springs into action and alerts the 
engineers of the problem. The situation can be remedied if trust is added to the model. 

While the simple graph patterns above are not prepared to handle transitive trust 

relationships, a more elaborate set of patterns and rules would accept the case where 
AMAN trusts SWIM over MD, and SWIM trusts the SWIM Boxes over MD, which might 

be more realistic than AMAN trusting every involved SWIM Box. 

4.5 Incremental model synchronization 

Incremental graph pattern matching, which powers Evolution Rules can also be 

exploited to maintain a model mapping relationship between different models involved 

in the process. These mappings can include the synchronization between various 
requirement modelling formalisms and the unified model of the SecMER methodology, 

and the communication between requirements models and other domain models. Due 

to the incremental pattern matching technology, source incrementality is achieved and 
the mapping can be performed on-the-fly. 
When establishing incremental synchronization between two domains, several 

transformation rules have to be created. For model entities (graph nodes), mapping 

rules have to be defined for the following cases: 
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• when a new entity is created in one domain, it should be mapped to the other 

domain and the corresponding element created there, 

• when an entity is deleted from one domain, its image (if any) should also be 

deleted from the other domain, 

• when the name or another attribute of an element is changed in one domain, 

the image of the element in the other domain should be changed accordingly. 

Similar rules can be created for relationships (graph edges). 

For cases where there is no one to one mapping, rules have to be adapted 

accordingly; if a model in domain A has multiple images in domain B, then one of them 
is created as the image of A, but it should be possible later to choose a different one 

and still keep the model in domain A intact, and yet consider them synchronized. 

Traceability is a further important concern for the rule-based transformation algorithm. 
Elements created by the synchronizing transformation should be provided with 

traceability information, so that they can be traced to their pre-image. This information 

is necessary for the incremental rules outlined above. 

Applying the general ideas to the problem of security requirements modelling, the 
requirements model (or parts of it) can be represented in multiple formalisms, with 

incremental synchronization provided between them. The possible formalisms include 

the SecMER conceptual model outlined in D.3.2 as our core conceptual model as well 
as Security DSML, Problem Frames, or Tropos. Whenever one of the formalisms is 

manually changed, the relevant fragments that can also be represented in other 

formalism are incrementally propagated there. If some aspects of the change cannot 
be represented in the domain where the initial manual modification is made, they can 

later be applied in other formalisms. 

For example, in the ATM scenario, the introduction of the SWIM implies that new 

nodes and edges are created, and obsolete ones are deleted. The initial manual 
change can be indicated in a Problem Frames model by representing SWIM by a new 

causal domain (along with corresponding interfaces).These new elements are mapped 

to the SecMER  conceptual model as actors and delegation of information resources. 
They are in turn propagated to Tropos as Tropos actors and delegations. 
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Abstract—Software systems are made to evolve in response
to changes in their contexts and requirements. As the systems
evolve, security concerns need to be analysed in order to
evaluate the impact of changes on the systems. We propose
to investigate such changes by applying a meta-model of
evolving security requirements, which draws on requirements
engineering approaches, security analysis, argumentation and
software evolution. In this paper, we show how the meta-model
can be instantiated using a formalism of temporal logic, called
the Event Calculus. The main contribution is a model based
approach to argument analysis, supported by a tool which
generates templates for formal descriptions of the evolving
system. We apply our approach to several examples from an
Air Traffic Management case study.

Keywords-Security argumentation; Requirements Engineer-
ing; Evolution; Event Calculus; OpenPF

I. INTRODUCTION

Long-lived software systems often evolve over an ex-
tended period of time. Evolution of these systems is in-
evitable as they need to continue to satisfy changing business
needs, new regulations/standards and the introduction of
novel technologies.

Such evolution may add, remove, or modify the re-
quirements and parts of the system contexts, and migrate
the system from one operating platform to another. These
changes may result in requirements that were satisfied in a
previous release of a system not being satisfied in the newer
release of the system. When evolutionary changes violate
security requirements, a system may be left vulnerable to
attacks.

As a software system evolves, security concerns need to
be analysed in order to evaluate the impact of changes on
the requirements. Traditionally, changes that could affect
the system security have been handled in an ad-hoc way.
For instance, changes are often described in an informal
language, whilst the information about the existing system
design is partial. Analysing the security impact of changes
is therefore a complex challenge.

By adopting a model-based engineering methodology, we
propose to investigate such changes using a meta-model
of Evolving Security Requirements (ESR). The ESR meta-
model has the following characteristics.

1) Security problems are examined at the requirements
level

2) Security-specific concepts such as attacker, assets and
vulnerabilities are made explicit

3) Argumentation is used to describe relationship be-
tween formal and informal descriptions of system
artefacts in order to show why the system is thought
to be secure

4) Evolutionary changes are considered orthogonal to all
artefacts

The ESR meta-model draws on the concepts in require-
ments engineering, security analysis, argumentation, and
software evolution.

In this paper, we show how the ESR meta-model can
be used to generate templates for formal descriptions of a
system, in a way similar to model-driven code generation.
Security problems of software systems are described using
the problem diagrams [1]. Our tool OpenPF performs
the model-to-text transformation to generate Event Calculus
descriptions compliant with the ESR meta-model. As a
result, changes in the meta-model can be reflected by the
generated Event Calculus descriptions before modifying and
feeding into a reasoning engine for security analysis. Since
the meta-model is rich enough to express core concepts in
security requirements, many of the existing RE languages
can be mapped to the meta-model so that the argumentation
can be performed to analyse the changes in the evolution.

The major advantage of our approach is that it frees
the requirements engineers from having to write mundane
parts of the formal descriptions as the system evolve: they
can focus on the more abstract and critical part of the
descriptions instead.

We have applied the transformations to examples from
an Air Traffic Management system. The study shows that a
large part of the formal descriptions can be generated using
the OpenPF tool, whilst improving the interface with the
Event Calculus reasoning engine.

The rest of the paper is organized as follows. Section II
relates our work to similar approaches in the literature.
Section III presents an illustrative example from the Air
Traffic Management (ATM) system. Section IV shows the
key parts of the ESR meta-model, which captures the key
concepts involved in our analysis. Section V gives the syntax
and semantics of the Event Calculus formalism, which is
the target language for the transformations. The proposed
tool, OpenPF is described in Section VI. Section VII uses
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the running example to go through the transformation and
reasoning processes and explains the results. Section VIII
gives concluding comments.

II. RELATED WORK

By way of putting our discussions into context, this
section provides a survey of related work, which covers
existing research into meta-models of requirements, secu-
rity requirements, change management and formalisation of
argumentation.

Meta-models of (security) requirements: Gunter et
al. [2] formalise the relationships between key artefacts
in requirements engineering, namely, requirement, problem
world context, specification, program, and computer. They
further define the responsibilities of requirements engineers
and software developers. Earlier, Parnas and Madey pro-
posed the four-variable model in [3]. Jureta et al. [4] extend
the Jackson-Zave framework in order to include concepts
such as beliefs, desires, intentions, and attitudes. These
meta-models are not explicit about security requirements:
they do not distinguish between users and attackers, for
instance.

There are several proposals for meta-models of security
requirements engineering: Hartong et al describe a meta-
model of misuse cases [5]. Susi et al [6] give a meta
model of Tropos. van Lamsweerde [7] suggests that KAOS
provide necessary concepts for analysing intentional security
requirements. Elahi et al. [8] propose a ontology of security
requirements which focuses on the notion of vulnerabil-
ity. Beydoun et al [9] incorporate security issues into a
meta-model of multi-agent systems. Basin et al describe
a meta-model-based approach to analysing access control
problems. A taxonomy of information security is provided
by Savolainen et al in [10]. Lee et al [11] propose a domain
ontology based on regulatory documents.

Although these proposals are useful in modelling different
aspects of security requirements, they do not capture evolu-
tionary nature of security requirements. Furthermore, the fact
that security analysis has to draw on the formal and informal
descriptions of the system is often overlooked. Our meta-
model is geared towards evolutionary security requirements,
and argumentation for bringing together formal and informal
descriptions.

Security requirements engineering: Several require-
ments engineering approaches for security engineering have
been proposed [12], [13], and many of the approaches have
been surveyed in [14], and here we briefly recall some of
them to put this work into context.

In [13], precondition calculus has been used to regres-
sively compute obstacles. Label propagation has been used
in goal-oriented requirements engineering in order to analyse
satisfaction of security requirements [15]. However, the issue
of maintaining the security while introducing change to an
existing system has not been extensively studied.

Change Management: The importance of managing
change in software development has been recognized for a
long time [16]. Several approaches for investigating software
evolution have been developed, focusing on various issues
including: empirical observation of change [17], feature
location [18], version control of development artefacts [19],
evolving the software systems during the runtime [20],
change recommendations based on historical data and
heuristics [21], [22], and economic analysis of change [23].

Although many of these issues are present in the evolution
of secure software systems, in this work we focus on
the unresolved issue of model-based generating of formal
descriptions in order to facilitate automated analysis of
change.

Arugmentations: Human intuitions about argumenta-
tion have been formalized recently using various logics [24]–
[29], in which the use of formal and informal argumenta-
tions in the context of requirements engineering have been
discussed. For example, argumentation has been useful to
document the correctness and completeness of goal de-
composition using GSN in [29]. Earlier, an argumentation
framework to security requirements has been developed and
applied in [30]. This work can be considered as an extension
to [30] that addresses the argumentation problem together
with tool supported change analysis.

III. ATM EXAMPLE: SENDING WEATHER DATA

One of the key services of ATC systems is to maintain
a degree of separation distance between aircrafts. This
involves the surveillance of aircrafts in airspaces, and the
determination of the flight paths and the separation neces-
sary. Separation distance may vary for a number of reasons,
including the type of involved aircrafts, and the stages of
journey they are at. For all airborne aircraft in a controlled
airspace, human air traffic controllers (ATC operators) on the
ground need to know where each aircraft is in the airspace
in order to determine the flight paths.

One of the main requirements of the ATC systems is to
ensure that a certain separation distance (SD) is maintained
between aircrafts in the airspace controlled by an ATC
system. The SD requirement needs to be satisfied by the
system at all times. Furthermore, ATC operators can send
various data and directions to the aircrafts using ATM sys-
tem. Some of the data can potentially change the flight paths
and are therefore security-related. One of such requirements
considered in the rest of the paper is about sending weather
data to the aircraft.

During the analysis of requirements such as this, the
requirements engineer will have to describe the behaviour
of various parts of the system, including the ATC operator,
ATM system, the aircraft, and the pilot, identify the assets
and security vulnerabilities in each of the components and
their configuration, provide mitigation when necessary and
show that the security requirements can be met by the system
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through formal/informal arguments. In addition, when the
system evolves, the behaviour of the system components
and the requirements may change. Therefore, automated
generation of partial descriptions of the system components
facilitates the analysis process.

IV. META-MODEL

Our ESR meta-model, shown in Figure 1, combines con-
cepts from requirements engineering, evolution and security
analysis. Some of the key concepts in the meta-model are
explained below.

Evolution Concepts: A model captures a situation at
a given time, which contains a set of contexts and a set of
subjects. The model can generally evolve by modifying the
contexts and by introducing new subjects. When the time
intervals are sufficiently small, the changes of the model are
assumed to be small. Yet the impact of such smaller changes
may still cover a large portion of the model. In order to show
that important security requirements are satisfied after some
change has been implemented, it is necessary to consider
how the change should be propagated. In establishing that,
the following concepts can be useful.

Requirements Engineering Concepts: A knowledge
context has a set of propositions. A proposition can be
assumed a fact or a rule, which is part of a given domain
context, or can be supported by a set of propositions in
an argument context. Both contexts and propositions are
concerned with a set of subject matters. A subject matter
in requirements engineering is either a resource, a process
or an actor. A resource is a subject that may have multiple
data states, a process is a subject that may have control
behaviours that can be described by domains representing
pre- or post-conditions, and an actor is a subject that
may want requirements and may conduct some processes.
A requirement relates an actor to a number of wanted
propositions.

Problem Frames Concepts: The Problem Frames ap-
proach [1] emphasises the relationship between three main
artefacts: a specification of a system (called machine), within
a particular problem world context, satisfies a given require-
ment. Fulfils between a specification S and a requirement
R can be represented by a logic entailment relation that
W, S ! R, where W is the contexts in the situation. Some of
the domains are physical domains with causal behaviour [1].

Temporal Logic Concepts: The temporal logic we use
is a first-order predicate logic with discrete time. It has three
main sorts: time, event and fluent (time varying property).
Later in the discussion, we will explain how these concepts
are used to describe requirements engineering artefacts.

Security and Argumentation Concepts: An asset is a
resource that has desired value to the stakeholders (actors).
It must be protected according to a security goal from
damages that may be introduced by a potential attack. An
attacker wants to achieve anti-requirements, which would

Table I: Elementary Predicates of the Event Calculus
Predicate Meaning
Happens(a, t) Action a occurs at time t
Initiates(a, f , t) Fluent f starts to hold after action a at

time t
Terminates(a, f , t) Fluent f ceases to hold after action a at

time t
HoldsAt(f , t) Fluent f holds at time t
t1 < t2 Time point t1 is before time point t2

Clipped(t1, f, t2)
def≡ ∃a, t[Happens(a, t)∧

t1 ≤ t < t2 ∧ Terminates(a, f, t)]
(EC1)

Declipped(t1, f, t2)
def≡ ∃a, t[Happens(a, t)∧

t1 ≤ t < t2 ∧ Initiates(a, f, t)]
(EC2)

HoldsAt(f, t2) ← [Happens(a, t1)∧
Initiates(a, f, t1) ∧ t1 < t2∧

¬Clipped(t1, f, t2)]
(EC3)

¬HoldsAt(f, t2) ← [Happens(a, t1)∧
Initiates(a, f, t1) ∧ t1 < t2∧

¬Declipped(t1, f, t2)]
(EC4)

HoldsAt(f, t2) ← [HoldsAt(f, t1) ∧ t1 < t2∧
¬Clipped(t1, f, t2)]

(EC5)

¬HoldsAt(f, t2) ← [¬HoldsAt(f, t1) ∧ t1 < t2∧
¬Declipped(t1, f, t2)]

(EC6)

Figure 2: Event Calculus Domain Independent rules

obstruct the fulfilment of the security goals. An attack
exploits vulnerability propositions inside the domains. By
challenging the domain knowledge with additional proposi-
tions, a rebuttal is effectively constructed to demonstrate that
the security requirements are not achievable under possible
attacks.

A mitigation may introduce further changes to the domain
knowledge such that the satisfaction argument of security
requirements is valid again. Both rebuttals and mitigations
are forms of arguments in different situations, hereby we
choose not to represent them as separate concepts.

V. THE EVENT CALCULUS

t First introduced by Kowalski and Sergot [31], the Event
Calculus (EC) is a system of logical formalism, which
draws from first-order predicate calculus. It can be used to
represent actions, their deterministic and non-deterministic
effects, concurrent actions and continuous change [32]. We
chose EC as our formalism, because it is suitable for describ-
ing and reasoning about event-based temporal systems such
as the Air Traffic Management systems. Several variations
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Figure 1: A ESR meta-model for Analysing Evolving Security Requirements

of EC have been proposed, and the version we have adopted
here is based on the discussions in [33].

The calculus relates events and event sequences to fluents,
or time-varying properties, which denote states of a system.
Table 1, based on [33], gives the meanings of the elementary
predicates of the calculus we use in this paper. The domain-
independent rules in Fig. 2, taken from [33], state that:
Clipped(t1, f, t2) is a notational shorthand to say that the
fluent f is terminated between times t1 and t2 (EC1),
Declipped(t1, f, t2) is another notational shorthand to say
that the fluent f is initiated between times t1 and t2 (EC2),
fluents that have been initiated by occurrence of an event
continue to hold until occurrence of a terminating event
(EC3), fluents that have been terminated by occurrence
of an event continue not to hold until occurrence of an
initiating event (EC4), and truth values of fluents persist until
appropriate initiating and terminating events occur (EC5 and
EC6).

Following Shanahan, we assume that all variables are
universally quantified except where otherwise shown. We
also assume linear time with non-negative integer values. In
EC, we follow the rules of circumscription in formalizing
commonsense knowledge [34], by assuming that all possible
causes for a fluent are given in the database and our
reasoning tool cannot find anything except those causes.

A. Describing ESR Models using the EC

In our approach to specifying event-based systems, re-
quirements are constraints on the combinations of fluents
capturing the required states of resources. Problem world
domains capture behaviours of processes that are described
by causality between pre- and post-conditions, called domain
obligations. We now define them more formally.

Definition 5.1: Observations consist of a finite conjunc-
tion of (¬)HoldsAt predicates. Reference phenomena (Γ)
are observations describing the given state of the resources
or given action of the processes, while controlled phenomena
(Γ′) are observations describing the desired state of the
resources or triggering of actions. They are also captured
by the pre/post conditions of the process. A requirement is
expressed either as

• ground observations Γ′, without any reference to the
given state of the resource or given action of the
processes, or

• as a relationship between the reference and the con-
trolled phenomena, such as a constraint of the form
Γ → Γ′ , or an action precondition axiom of the form
(¬)Happens(f1, t) → Γ′ where the antecedent is an
occurrence of an action in the system (for example, to
say that when an event a1 happens at time t, the fluent
f1 must be true at t1).

For example, the requirement
HoldsAt(AircraftOnGround, t) ∧ 0 ≤ t ≤ 9 says
that the aircraft must be on the ground between
the timepoints 0 and 9 range; the requirement
HoldsAt(Airborne, t) → HoldsAt(TransponderOn, t)
says that as long as the aircraft remains airborne,
the transponder must be on; and the requirement
Happens(BreachSD, t) ∧ ¬Happens(Clearance, t2) ∧
t ≤ t1 ≤ t2 → HoldsAt(AlarmRaised, t1) says that
as soon as the separation distance is breached, the alarm
should be raised until the clearance happens.

Since requirements tend to be about desired properties
of the system over time, they will be formulated in terms
of fluents holding, rather than in terms of (instantaneous)
event occurrences. In other words, they specify ‘what’ the

!"!"



system should achieve rather than ‘how’ the specification or
processes achieve it.

Anti-requirements are requirements of an attacker, and
the system must ensure that those requirements are not
satisfiable. Since anti-requirements are also requirements,
they can expressed in a similar way. For instance, ∃t ·
HoldsAt(AircraftsCollide, t), is a requirement of an at-
tacker who wants to collide some aircraft.

B. Specifications/Obligations

We assume that a domain has the potential to generate
instances of events it controls: it may generate all, some or
none, of the event instances, even if that leads to undesired
states.

In order to see its significance, we will briefly discuss
some possible alternatives. In one other option, we may
assume that the specification by default does not generate
any event: In that case, if the specification describes events
that must be generated, the specification is closed; if the
specification describes events that may be generated, it
is impossible to prove any “liveness” property. Similarly,
we may assume that the specification by default generates
all events, and specifications should restrict certain event
occurrences. This again is not satisfactory for reasons similar
to those given above. Therefore we have to categorize events
into “must”, “must not” and “may”.

We therefore recognize three modes of describing spec-
ifications: in the Act mode, we describes events that must
be generated (using Happens); and in the Prohibit mode, we
describe events must not be generated (using Prohibit).

Prohibit(a, t1, t2)
def≡

¬∃t · Happens(a, t) ∧ t1 ≤ t ≤ t2
(EC7)

In the third implicit mode, all other possible events are
left undescribed because their occurrence or non-occurrence
is assumed not to affect the requirement satisfaction.

In a closed specification, the union of “must” and “must
not” covers all possible event sequences of the software
(there is no event that may or may not happen). In a partially
open specification, occurrence or non-occurrence of at least
one event is not described: therefore there can be more than
one specification that fulfil the requirement.

Definition 5.2: A specification is expressed as a fi-
nite conjunction of the event occurrence constraints (Ψ)
of the form (¬)Happens(a1, t) ∧ (¬)HoldsAt(f, t) →
(¬)Happens(a2, t) where a1, a2, t, and f are terms for
the action, time point, and fluent respectively.

Definition 5.3: A domain description in our approach to
ATM is expressed as event-to-condition and condition-to-
event causality. The first causality deals with what happens
to the fluents when events occur, and the second causality
deals with the domain properties that lead to the occurrence

of certain events. In the Event Calculus, the event-to-
condition causality is described as a finite conjunction posi-
tive effect axioms and negative effect axioms (Σ) of the form
Initiates(a, f, t)← Π or Terminates(a, f, t)← Π where
Π has the form (¬)HoldsAt(f1, t)∧· · ·∧(¬)HoldsAt(fn, t)
and t, and f1 to fn are terms for the time and fluents
respectively. The condition-to-event causality is described
as a finite conjunction of trigger axioms (∆2) of the form
Happens(a, t) ← Π. For example, the following statement
says that if the aircraft has transponder, an occurrence of
the event interogateTransponder has an effect of making
BroadcastACInfo true.

Initiates(interogateTransponder,BroadcastACInfo, t)
← HoldsAt(HasTranspnder, t)

Similarly, the following statement says that the fluent
OperatorHasWeatherInfo on becoming true, generates
the event sendWeatherInfo because of the functionality
SendWeatherInfo.

Happens(sendWeatherInfo, t)←
HoldsAt(OperatorHasWeatherInfo, t)∧

¬HoldsAt(OperatorHasWeatherInfo, t− 1)

Note that the condition
¬HoldsAt(OperatorHasWeatherInfo, t − 1) is
necessary to prevent stuttering of the event sendWeath-
erInfo when the fluent OperatorHasWeatherInfo holds
continuously.

C. Important Properties

Before we describe the important properties, we will make
certain assumptions clear. First, these have to rely on the
consistency of the domain theory Σ and observations Γ
and Γ′. Second, we assume uniqueness of fluent and event
names, meaning that no two names denote the same thing.
This uniqueness axiom is represented by Ω.

A simple specification in this approach is a proactive
specification that addresses a subtype of problem known
as Required Behaviour. In this type of problem, a spec-
ification is required to bring about certain states in the
system resources, without relying on the feedback from the
other processes. In such cases, the basic property of the
descriptions we want is:

Σ ∧Ψ |= Γ′

That is, given a theory of physical domains (Σ), a specifica-
tion (Ψ), and an appropriate deductive system, we want to
show that the requirements are satisfied non-trivially.

In more common cases, the system has to rely on the
feedback from the environment (∆2) and observations about
the environment (Γ) .

Σ ∧ Γ ∧∆2 ∧Ψ |= Γ′
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D. Analysis

Finding vulnerabilities is done through logical abduction.
1) We first pose a logical abduction problem in order to

find all constructive hypotheses (∆1) explaining how,
given the domain theory (Σ∧Γ∧∆2), the requirement
(Γ′) can be satisfied, i.e.

CIRC[Σ; Initiates, Terminates]∧
CIRC[∆1 ∧∆2;Happens] ∧ Γ ∧ Ω |= Γ′

where ∆1 is consistent with the domain theory. ∆1 is a
partially ordered sequences of event occurrences that,
given the physical domains, leads to the requirement
being satisfied. The circumscription operator assumes
that no events other than those by ∆1 and ∆2 may
occur (otherwise the requirement is not satisfied).
Therefore, ∆1 tells us events that must happen and
that may happen. Event occurrences that do not appear
in ∆1 must not happen.
However, some of the hypotheses in ∆1 may not
be “realistic”: for example, a scenario may assume
competence and co-operation of users to a level that
cannot be guaranteed. Furthermore, ∆1 may also con-
tain stuttering events that can be eliminated without
affecting requirements satisfactions1.

2) The developer then identifies the ‘unrealistic’ hy-
potheses in ∆1 and eliminates them by providing
further information about the problem world domains.
Similarly, event stuttering is removed by adding fur-
ther constraints (which is then used to weaken the
specifications). These are assertions, or mitigation, we
want the tool to consider.

3) When no vulnerabilities can be found, there are no
“internal” vulnerabilities2.
Notice that Ψ is not circumscribed: it will have to
make explicit all events that must not happen. There-
fore, Ψ describe all events that must happen, and
all events that must not happen, the remainder being
events that may happen.

E. Event Caclulus Reasoner

We choose Decreasoner to implement the verification
for the generated EC rules. Decreasoner translates the
EC rules into SAT formulae automatically, and invokes
Rel-Sat solver to check whether they are satisfiable, given
the bounded time range. In principle, abductive process may
not terminate if the goal cannot be satisfied; however, since
the time range is discrete and bounded, the tool forces a
termination when the time limit is reached. Therefore, it
is important to choose a reasonably large time range. This

1This is often called “invariance under stuttering” (for example [35]).
Model checking techniques, known as “partial order reduction”, exploit this
property to reduce state space [36].

2These are vulnerabilities that can be found with the model.

1 grammar uk . ac . open . problem . Problem wi th uk . ac . open . I s t a r
2 import ” p l a t f o r m : / r e s o u r c e / openome model / model / openome model . e c o r e ” as

openome model
3 g e n e r a t e problem ” h t t p : / / open . ac . uk / problem ”
4
5 ProblemDiagram : ( ” problem ” ’ : ’ d e s c r i p t i o n =STRING ) ?
6 ( ( nodes +=Node| l i n k s += Link ) )∗;
7
8 Node :
9 name=ID ( t y p e =NodeType ) ?

10 ( ’ : ’ d e s c r i p t i o n =STRING ) ?
11 ( ”{” ( subprob lem =ProblemDiagram | ” s e e ” ” domain ” problemRef =[ Node ] |
12 i s t a r =Model | ” s e e ” ” i n t e n t i o n ” i s t a r R e f =[ openome model : :

I n t e n t i o n ] |
13 ( hiddenPhenomena+=Phenomenon ( ’ , ’ hiddenPhenomena+=Phenomenon )∗)
14 ) ”}” ) ? ;
15
16 enum NodeType :
17 REQUIREMENT=”R” | MACHINE=”M” | BIDDABLE=”B” | LEXICAL=”X” | CAUSAL=”C” |

DESIGNED=”D” | PHYSICAL=”P” ;
18
19 Phenomenon :
20 ( t y p e =PhenomenonType ) ? name=ID ( ’ : ’ d e s c r i p t i o n =STRING ) ? ;
21
22 enum PhenomenonType :
23 UNSPECIFIED=” phenomenon ” | EVENT=” e v e n t ” | STATE=” s t a t e ” ;
24
25 Link :
26 from =[ Node ] ( t y p e =LinkType ) t o =[ Node ] ( ’{ ’ phenomena+=Phenomenon ( ’ , ’ phenomena

+=
27 Phenomenon )∗ ’} ’ ) ? ( ’ : ’ d e s c r i p t i o n =STRING ) ? ;
28
29 enum LinkType :
30 INTERFACE=”−>” | REFERENCE=” ˜ ˜ ” | CONSTRAINT=”˜>” ;

Figure 3: Partial listings of the concrete syntax of the the
ESR meta-model in Figure 1

range, however, is not enlarged if a counter example can
already be found.

VI. OPENPF
This section explains how Event Calculus templates are

generated from Problem Frame diagrams using OpenPF.

A. Concrete Syntax
Figure 3 lists the most of concrete syntax for the Problem

Frames concepts in the EMF meta-model shown in Figure 1.
This concrete syntax is given in order to show the textual
representations of the meta-model, and also to indicate
that the root concept in the representation is the problem
diagram.

The syntax is composed of a number of BNF-like rules,
each defines one non-terminal at the left hand side and a
number of refinement parsable elements, including both non-
terminals and terminals. The words occurring as strings in
the rules are treated as keywords, which is only necessary
in the concrete syntax. For the same abstract syntax in
Figure 1, there can be more than one way to express the
concrete syntax. In this example, we try to express it using
intuitive keywords consistently. Comparing the graph-based
meta-model with the tree-based concrete syntax, one useful
feature of xtext is to use ID to provide shared references
inside other types.

An example of the ESR model is given in Figure 4.
As the example shows, the syntax for writing a problem
diagram is straightforward. First, the name of the problem
diagram (“Has Weather Data”) is defined (Lines 1-2). “Has
Weather Data” is a requirement node (indicated by R) and is
identified by HasWData. Aircraft is a causal domain with no
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1 problem :
2 ” Has Weather Data ”
3
4 HasWData R : ” Has Weather Data ”
5
6 A i r c r a f t C
7
8 ATMSystem M: ” Ai r T r a f f i c Management System ”
9

10 O p e r a t o r B : ”ATC O p e r a t o r ”
11
12 O p e r a t o r −> ATMSystem : ” a ”
13
14 ATMSystem−> A i r c r a f t : ” b ”
15
16 HasWData ˜> A i r c r a f t : ” r ”

Figure 4: Full listings of one concrete example of the ESR
model

a: O!{InputWeatherData}
b: AS!{SendWeatherData}

r: A!{HasWeatherData}

Figure 5: Problem Diagram: Has Weather Data

description. Air Traffic Management System is a machine
domain, whilst ATC Operator is a biddable domain. The
interface between the operator and ATM System is named
a, and the interface between ATM System and aircraft is
named b. The requirement constrains the aircraft domain,
and is named r.

B. Diagramming
OpenPF also provides editor and automatic diagramming

of problem diagrams from the syntax given above. A prob-
lem diagram for the problem of sending weather data is
shown in Figure 5, together with a description of the events.

C. Generating Event Calculus Templates
Generating Event Calculus templates from the problem

diagram is done using the OMG Text-to-Model (Xtext) and
Model-to-Text transformation (Acceleo) framework inside
the Eclipse modelling Project. The expression syntax of
the Model-to-Text transformation is similar to that of OCL,
and the concrete syntax resembles the JavaScript language,
except that code generation tags are enclosed by square
brackets rather than by XML brackets.

First, it is necessary to determine the output file name
and generate a common header to include the predefined

1 [ module g e n e r a t e ( ’ h t t p : / / open . ac . uk / problem ’ ) / ]
2 [ t e m p l a t e p u b l i c g e n e r a t e ( d : ProblemDiagram ) ]
3 [ f i l e ( d . d e s c r i p t i o n . t o S t r i n g ( ) . c o n c a t ( ’ . ec ’ ) , f a l s e ) ]
4 l o a d f o u n d a t i o n s / Root . e
5 l o a d f o u n d a t i o n s / EC . e
6 [ f o r ( dom : Node | d . nodes ) ]
7 [ f o r ( h i dd en : Phenomenon | dom . hiddenPhenomena ) ]
8 [ i f ( h i dd en . t y p e . t o S t r i n g ( ) = ’ s t a t e ’ ) ]
9 f l u e n t [ h id de n . name / ] [ dom . name / ] ( )

10 [ / i f ]
11 [ / f o r ]
12 [ / f o r ]
13 [ f o r ( i n t e r f a c e : Link | d . l i n k s ) ]
14 [ f o r ( s h a r e d : Phenomenon | i n t e r f a c e . phenomena ) ]
15 [ i f ( s h a r e d . t y p e . t o S t r i n g ( ) = ’ e v e n t ’ ) ]
16 e v e n t [ s h a r e d . name / ] [ i n t e r f a c e . d e s c r i p t i o n / ] ( )
17 [ / i f ]
18 [ i f ( s h a r e d . t o S t r i n g ( ) = ’ s t a t e ’ ) ]
19 f l u e n t [ s h a r e d . name / ] [ i n t e r f a c e . d e s c r i p t i o n / ] ( )
20 [ / i f ]
21 [ / f o r ]
22 [ / f o r ]
23 [ f o r ( dom : Node | d . nodes ) ]
24 [ i f ( dom . t y p e . t o S t r i n g ( ) <> ’R ’ ) ]
25 ;−−[dom . name/]−−
26 [ ’ [ ’ / ] t ime [ ’ ] ’ / ]
27 [ f o r ( i n t e r f a c e : Link | d . l i n k s ) ]
28 [ i f ( i n t e r f a c e . t o = dom ) ]
29 [ f o r ( s h a r e d : Phenomenon | i n t e r f a c e . phenomena ) ]
30 [ i f ( s h a r e d . t y p e . t o S t r i n g ( ) = ’ e v e n t ’ ) ]
31 Happens ( [ s h a r e d . name / ] [ i n t e r f a c e . d e s c r i p t i o n / ] ( ) , t ime ) ,
32 [ / i f ]
33 [ i f ( s h a r e d . t o S t r i n g ( ) = ’ s t a t e ’ ) ]
34 HoldsAt ( [ s h a r e d . name / ] [ i n t e r f a c e . d e s c r i p t i o n / ] ( ) , t ime ) ,
35 [ / i f ]
36 [ / f o r ]
37 [ / i f ]
38 [ / f o r ]
39 −>
40 [ f o r ( i n t e r f a c e : Link | d . l i n k s ) ]
41 [ i f ( i n t e r f a c e . from = dom ) ]
42 [ f o r ( s h a r e d : Phenomenon | i n t e r f a c e . phenomena ) ]
43 [ i f ( s h a r e d . t y p e . t o S t r i n g ( ) = ’ e v e n t ’ ) ]
44 Happens ( [ s h a r e d . name / ] [ i n t e r f a c e . d e s c r i p t i o n / ] ( ) , t ime +1) ,
45 [ / i f ]
46 [ i f ( s h a r e d . t o S t r i n g ( ) = ’ s t a t e ’ ) ]
47 HoldsAt ( [ s h a r e d . name / ] [ i n t e r f a c e . d e s c r i p t i o n / ] ( ) , t ime +1) ,
48 [ / i f ]
49 [ / f o r ]
50 [ / i f ]
51 [ / f o r ] .
52 [ / i f ]
53 [ / f o r ]
54 r a n g e t ime 0 3
55 r a n g e o f f s e t 1 2
56 [ / f i l e ]
57 [ / t e m p l a t e ]

Figure 6: Part of listings of the code generation rules:
transforming from the ESR meta-model into EC

EC rules (Line 3-5). Names of fluents that are internal to
the domains are identified, suffixed with the domain names,
and declared (Line 9). Similarly, names of events and fluents
shared between domains are also identified, suffixed with the
domain names, and declared (Line 16, 19). This suffixing of
the fluent and event names ensures that it is possible to trace
the results of the reasoning tool back to specific parts of the
problem diagrams.

Apart from the common footer (Lines 54-55), the rest of
the template is pattern-based. Some of the patterns are now
discussed. A typical instance of the domain specification
(Definition 5.2) is if event e1 happens at time t, then another
event e2 happens at a time after t, t+1 (Lines 25-53).
Given the diagram matching this pattern, a transformation
is applied to generate the following rule snippet for the
template:

; -- Domain --
[time] Happens(e1, t) ->

Happens(e2, t + 1).
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Here the “[time]” denotes a universally quantified variable.
Note that this is a generic template in which one can change
the time delay between the two event occurrences. Generally
speaking, this pattern will put all events and fluents a domain
observes on the left-hand side, and all events and fluents a
domain controls on the right-hand side of an implication.

Formulae for event-to-fluent and fluent-to-event causali-
ties are also common (Definition 5.3). For this causality,
typically there is a domain with a fluent and two events,
where one of the events is observed by the domain, and the
other event is controlled by the domain. In such cases, the
pattern will produce Initiates and Terminates formulae, and
Happens formulae.

As a result of these transformations, syntactically correct
EC descriptions are generated, which can be further modified
by the tool users before analysing them.

VII. EXAMPLE ANALYSIS AND RESULTS

We now work through the example introduced in Sec-
tion III. First, we describe the abstract domain behaviour
in terms of its obligations. We begin by drawing a simple
diagram showing the problem world domains, their relation-
ships and the property the system needs to hold. The diagram
(Figure 5) shows that the operator sends weather information
to the aircraft using the ATM system.

A. Describing Specifications/Obligations
We then describe the behaviour of the domains in terms

of the events they observe and events they control. OpenPF
templates mentioned above produces the following descrip-
tions.
; -- AS1 --
[time] Happens(InputWeatherData_a(),time) ->

Happens(SendWeatherData_b(), time+1).

When the ATM system observes the input, it will send
the weather information to the aircraft at the next time point.
Similar descriptions can be generated for the other domains.
For the operator, we may assume that when the operator is
told about weather information is available, s/he inputs the
information to the ATM system at the next time point.
; O1 -- Operators --
[time] Happens(TellWeatherInfo,time) ->

Happens(InputWeatherInfo, time+1).

; A1 -- Aircraft --
[time] Initiates(SendWeatherInfo_f(),

HasWeatherInfo_Aircraft(), time).

When the aircraft observes the weather information being
sent, the aircraft will has the aircraft information.

B. Describing Domain Behaviour
Let us suppose that the operator has the following be-

haviour.
; O2
[time] Initiates(ReceiveWeatherData,

WeatherData_Known, time).
; O3
[time] !HoldsAt(WeatherData_Known,time)

& HoldsAt(WeatherData_Known,time +1) ->
Happens(InputWeatherData,time + 1).

The first statement says that receiving weather data by
the operator means that the weather data is known to the
operator. The second statement says that as soon as the
operator knows weather information, the InputWeatherData
event is generated.

In order to define the partial Behaviour of the aircraft, we
first define a few additional sorts.

fluent Collided(ac,ac)
fluent At(ac,pos)
event Move(ac,pos,pos)
fluent Avoid(pos)

The fluent Collided(ac,ac) is true when two aircraft col-
lided; the fluent At(ac,pos) is true when the aircraft is at the
position; the fluent Avoid(pos) is true when no aircraft is
at the position; and Move(ac,pos,pos) says that the aircraft
moves from one position to another.

[time,ac,pos,pos1]
Initiates(Move(ac,pos,pos1),At(ac,pos1),time).

[time,ac,pos,pos1]
Terminates(Move(ac,pos,pos1),At(ac,pos),time).

[time,ac,pos,pos1]
Happens(Move(ac,pos,pos1),time) -> (pos<pos1).

[time,pos,pos1,ac]
HoldsAt(At(ac,pos),time) &
HoldsAt(At(ac,pos1),time) -> (pos=pos1).

[time,ac,ac1,pos,pos1]
HoldsAt(At(ac,pos),time+1) & (ac!=ac1) ->
Initiates(Move(ac1,pos1,pos),

Collided(ac,ac1),time).

[time,ac,ac1,pos,pos1]
!HoldsAt(At(ac,pos),time+1) & (ac!=ac1) ->
Terminates(Move(ac1,pos1,pos),

Collided(ac,ac1),time).

[time,ac,ac1]
HoldsAt(Collided(ac, ac1),time) -> (ac!=ac1).

[time,ac,ac1]
HoldsAt(Collided(ac, ac1),time) <->
HoldsAt(Collided(ac1, ac),time).

[time,ac,ac1,pos,pos1]
(time=0) -> (HoldsAt(At(ac,pos),time) &
HoldsAt(At(ac1,pos1),time) & (ac!=ac1) ->
(pos!=pos1)).

[time,ac,pos] HoldsAt(Avoid(pos),time) ->
!HoldsAt(At(ac,pos),time).

The above formulae describe how planes move along
paths, and when happens when planes converge on a po-
sition. Depending on the weather information received from
the operator, various constraints can be placed on the flight
by stating positions that need to be avoided. For instance,
the following says that the position 1 should not be on the
flight path.

HoldsAt(Avoid(1),1).
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C. Analysing Domain Obligation
First, we can check that there is at least one model of the

operator behaviour (O2 and O3) that satisfies its specification
(O1). Here the tool finds several models including the
following:

0
Happens(ReceiveWeatherData(t), 0).
1
Happens(InputWeatherData(g), 1).
2
Happens(InputWeatherData(g), 2).
Happens(SendWeatherData(f), 2).
3
+HasWeatherData_Aircraft().
P

At time 1, the operator receives the weather information,
which the operator inputs at the next time point. The weather
information is sent at time 2, and the aircraft has the weather
information at time point 3.

Next, we can check whether the operator behaviour can
fail to satisfy its obligation. Again, the tool finds several
models showing how the operator can fail to satisfy his/her
obligations, including the following:

0
WeatherDataKnown_Operator().
Happens(ReceiveWeatherData(g), 0).
1
Happens(ReceiveWeatherData(g), 1).
2
Happens(ReceiveWeatherData(g), 2).
3
P

In one of the models, the operator may know the weather
information, and still receive weather information, but fails
to input the information to the ATM system. This is a case
of operator witholding the information. This is a rebuttal
generated by the tool.

The rebuttal shows that the domain behaviour allows the
operator to input the weather information without being told.
This of course poses a security risk, if the operator has
malicious intent. This calls for a strengthening of the domain
behaviour by stating that the operator will send if and only
if s/he was told about the weather information.

; O3’
[time] !HoldsAt(WeatherData_Known,time)

& HoldsAt(WeatherData_Known,time + 1) <->
Happens(InputWeatherData,time+1).

In this case, the domain obligation is weaker than the domain
behaviour. Finally as a mitigation to this problem, we can
strengthen the domain obligations.

; O1’
[time] Happens(TellWeatherData,time) <->

Happens(InputWeatherData, time+1).

Once the domain behaviour and the obligations are strength-
ened, it is no longer possible to show that the operator
can fail to satisfy his/her obligation. The strengthening is
mitigation.

The security requirement to prevent collision can be
checked in the same way.

VIII. CONCLUSION

We have investigated some of the challenges of analysing
the security impact of evolutionary changes made to software
systems. First, we applied a meta-model of evolving security
requirements, which draws on concepts in requirements
engineering, security analysis, argumentation and software
evolution. We instantiated the meta-model using a formalism
of temporal logic, called the Event Calculus. We have
proposed a tool called OpenPF that generates templates
for Event Calculus descriptions of the evolving system, and
analyse them using a reasoning tool called Decreasoner.
The approach is illustrated with a simple example from an
Air Traffic Management system.
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Abstract. Requirement evolution has drawn a lot of attention from
the community with a major focus on management and consistency of
requirements. Here, we tackle the fundamental, albeit less explored, al-
ternative of modeling the future evolution of requirements.
Our approach is based on the explicit representation of controllable evolu-
tions vs observable evolutions, which can only be estimated with a certain
probability. Since classical interpretations of probability do not suit well
the characteristics of software design we also introduce a game-theoretic
approach to give an explanation to the semantic behind probabilities.
Based on this approach we also introduce quantitative metrics to sup-
port the choice among evolution-resilient solutions for the system-to-be.
To illustrate and show the applicability of our work, we present and
discuss examples taken from a concrete case study (the security of the
SWIM system in Air Traffic Management).

1 Introduction

“...There are known unknowns: that is to say, there are things
that we now know we don’t know...”

— Donald Rumsfeld, United States Secretary of Defense

In the domain of software, evolution refers to a process of continually updating
software systems in accordance to changes in their working environments such
as business requirements, regulations and standards. While some evolutions are
unpredictable, many others can be predicted albeit with some uncertainty (e.g.
a new standard does not appear overnight, but is the result of a long process).

The term software evolution has been introduced by Lehman in his work on
laws of software evolution [17, 18], and was widely adopted since 90s. Recent
studies in software evolutions attempt to understand causes, processes, and ef-
fects of the phenomenon [2,14,16,22]; or focus on the methods, tools that manage
the effects of evolution [19,25,28]. The ultimate objective is to make the software
systems more resilient to evolution.
! This work is supported by the European Commission under projects EU-FET-IP-
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Requirement evolution has also been the subject of significant research [12,
15, 24, 26, 31]. However, to our understanding, most of these works focus on the
issue of management and consistency of requirements. Here, we tackle the more
fundamental question of modeling uncertain evolving requirements in terms of
evolution rules. Our ultimate goal is to support the decision maker in answer-
ing such a question “Given these anticipated evolutions, what is a solution to
implement an evolution-resilient system?”.

This motivates our research in modeling and reasoning on a requirement
model of a system which might evolve sometime in the future. We assume that
stakeholders will know the tentative possible evolutions of the system-to-be, but
with some uncertainty. For example, the Federal Aviation Authority document
of the forthcoming service middleware SWIM for air traffic management lists
a number of potential alternatives subject to other high-level decisions (eg the
existence of an organizational agreement for nation-wide identity management of
SWIM users). Such organization-level agreements don’t happen overnight (and
may shipwreck at any time) and stakeholders with experience and high-level
positions have a clear visibility of the likely alternatives, the possible but unlikely
solutions, and the politically impossible alternatives.

Our objective is to model the evolution of requirements when it is known to
be possible, but it is unknown whether it will happen: the known unknown.

1.1 The contributions of this paper

We set up a game-theoretic foundation for modeling and reasoning on evolution-
ary requirement models:
– A way to model requirement evolutions in term of two kinds of evolution

rules: controllable and observable rules that are applicable to many require-
ment engineering models (from problem frames to goal models).

– A game-theoretic based explanation for probabilities that evolutions happen.
– Two quantitative metrics that assess the certainty of requirement models,

which provide clue for designer to make decision on optimal things to imple-
ment in to system-to-be.

The intuition behind controllable rules is that they are design decisions under
the control of the designer. In contrast, observable rules corresponds to potential
evolution whose realization is outside the control of the designer but that can
be somewhat estimated by the stakeholders.

The game-theoretic semantics of probability has been introduced since the
frequentist semantics of probabilities makes little sense for software design: man-
dating this or that requirements is likely a unique event and there is no random
variable to be sampled repeatedly, as one would find in a process of toin cossing.

In the rest of the paper, we describe a case study ( 2) which we use through-
out this work. Next, we discuss our approach ( 3) in which we model requirement
evolutions in terms of evolution rules. We then present our proposed quantitative
metrics ( 4) for reasoning on evolutionary requirement models. Next, we address
the problems of handling large requirement models and iterative evolution ( 5).
Finally, we briefly review past work in the field and conclude our work ( 6).
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Table 1. High level requirements of SWIM Security Services.

ID Requirement Opt.
RE1 Manage keys and identities of system entities (human, software, devices,...)
RE2 Support Single Sign-On (SSO) •
RE3 Support a robust Identity and Key Management Infrastructure (IKMI)

that can be scaled up to large number of applications and users.
•

RE4 Intrusion detection and response
RB1 Less cross-program dependencies for External Boundary Protection System
RB2 More robust and scalable common security solution •
RB3 Simpler operation of External Boundary Protection System •
RB4 Support overall security assessment •

The Opt(ional) column determines whether a requirement is compulsory or not. Notice that this
compulsory is only applicable to the time system is designed. Due to evolution, optional requirements
may turn to be compulsory, and current compulsory requirements may no longer be needed or become
obsolete in the future.

2 Case study

Throughout this work, to give a clearer understanding of the proposed approach
we draw examples taken from the design architecture of System Wide Informa-
tion Management (SWIM) [7,23] in Air Traffic Management (ATM).

SWIM should provide a secure, overarching, net-centric data network, and
introduces a Service-Oriented Architecture (SOA) paradigm to airspace man-
agement. The objective of SWIM is to “decouple producer of information from
the possible consumer in such a way that the number and nature of consumers
can evolve through time” [23, p.16]. This approach provides a practical, low-cost
solution to integrate seamlessly legacy heterogeneous ATM systems, while facil-
itating the advantages of the next generation of ATM systems. This also means
the adaptability to the evolution of ATM system is increased.

The US FAA [7] proposes a logical high level functional architecture of SWIM
which consists of several function blocks. Our examples will focus on the Security
Services block, one of the essential elements of SOA Core Services of SWIM.
Basically, Security Services have two major functions: policy enforcement and
monitoring. The former function consists of enforcing policies regarding access
to services and data resources. The later consists of monitoring National Air
Space (NAS) services to detect security breach or fraudulent use of resources.

At high level analysis of security capabilities, there are five areas of security.
They are: i) NAS Enterprise Information Security System (ISS-ENT), ii) Bound-
ary Protection ISS (ISS-BP), iii) SWIM Core ISS, iv) NAS End System ISS, and
v) Registry control. To avoid a detailed discussion on the architecture of SWIM
Secure Services, which are not main topic of this work, while providing enough
information for illustrating our work we refine our scope of interest on two areas:
ISS-ENT and ISS-BP. Below, we describe a sketch overview of these areas.

– ISS-ENT includes security requirements that are provided as part of an
underlying IT/ISS infrastructure used by systems throughout the NAS.
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Table 2. Design elements that support requirements listed in Table 1.

ID Element Description RE1 RE2 RE3 RE4 RB1 RB2 RB3 RB4
A Simple IKMI •
B1 OpenLDAP based IKMI • •
B2 Active Directory based IKMI • • •
B3 Oracle Identity Directory based IKMI • • • •
C Ad-hoc SSO •
D Network Intrusion Detection System •
E Common application gateway for External

Boundary Protection System
• •

F Centralized Policy Decision Point (PDP) •
G Application-based solution for External

Boundary Protection System
•

Each element in this table can support (or fulfill) requirements listed in columns. To prevent useless
redundant, some elements are exclusive to due to functionality overlapping (e.g., A, B1, B2 and B3
are mutual exclusive each other).

– ISS-BP includes requirements regarding control connections and information
exchanges between internal NAS and external entities. These requirements
refer to both network layer controls (e.g., VPNs, firewalls) and application
layer controls (gateway application that controls the connection between
NAS and non-NAS systems, and ensures that the content of data packages
are conformed predefined rules before allowing them to pass).

Table 1 divides requirements in two groups: first, the essential requirements
at the time that the system is designed; second, the optional requirements that
can be ignored at present, but might be critical sometime in the future. For
convenience, each requirement has a corresponding identifier: two characters for
the security area (RE - stand for ISS-ENT requirements, RB - stand for ISS-BP
ones), and a sequence number.

Finally we show solutions to requirements of ISS-ENT and ISS-BP listed in
the previous table. Each solution occupies a row in Table 2. Each solution has
an IDentifier, a short description and checklist of requirements that it can fulfill.

3 Modeling Evolution Requirements

In this section, we describe how we model evolution, which essentially affects
to any further analysis. We capture the evolution by classifying them into two
groups: controllable and observable. Furthermore, we include in this section
the game-theoretic account for probability.

3.1 Evolution on requirement model: Controllable and Observable

Stakeholder requirements, mostly in a textual format, are stakeholder wishes of
the system-to-be. Analysis on these requirements in such a format is difficult and
not efficient. Designers then have to model requirements and design decision by
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using various approaches (e.g., model-based, process-based, or goal-based) and
techniques (e.g., DFD, UML).

In general, a requirement model basically is a set of elements and relation-
ships, which varies depended on particular approach. For instance, according to
Jackson and Zave [30], model elements are Requirements, Domain assumptions,
Specification. In goal-based models (e.g., i*), elements are goal, actor and so on.

Here we do not want to investigate on any specific requirement model (e.g.,
goal-based model, UML models), or go to detail about how many kinds of ele-
ment and relationship a model would have. The choice of a one’s favorite model
to represent these aspects can be as passionate as the choice of a one’s religion
or football team so it is out of scope. Instead, we treat elements at abstract
meaning, and only interest in the satisfaction relationship among elements.

In our work, we define the satisfaction relationship in terms of usefulness.
That an element set X is useful to another element set Y depends on the ability
to satisfy (or fulfill) Y if X is satisfied. We define a predicate useful(X, Y) which
returns true (1) if X can satisfy all elements of Y, otherwise return false (0). The
implementation of useful is depended on the chosen specific model. For examples:

– Goal models [20]: the useful corresponds to Decomposition and Means-end
relationships. The former denotes a goal can be achieved by satisfying its
subgoals. The later refers to achieving a (end) goal by performing (means)
tasks.

– Problem frames [13]: the useful corresponds to requirement references and do-
main interfaces relationships. Requirements are imposed by machines, which
connect to problem world via domain interfaces. Problem world in turn con-
nects to requirements via requirement references.

For evolutionary software systems which may evolve under some circum-
stances (e.g., changes in requirements due to changes in business or regulations,
wrong domain assumption), their requirement models should be able to express
as much as possible information about known unknowns i.e. potential changes.
These potential changes are analyzed with evolution assessment algorithms to
contribute to decision making process, where a designer decides what are going
to the next phase in the development process.

Based on a person who can decide these evolutions happen but those are not.
We categorize requirement evolutions into two classes:

– controllable evolutions, in which the designer can decide which evolution to
follow in order to meet some high level requirements from the stakeholder,
with low level requirements for component.

– observable evolutions which are not under the control of the designer, but it
can be somehow detected when it happened or whose future likelihood can
be estimated with a certain confidence of the stakeholder.

Controllable evolutions, in other words, are designer’s moves to identify dif-
ferent alternatives for implementing a system. The designer then can choose
the most “optimal” one based on her experiment and some analyses on these
alternatives. In this sense, controllable evolution is also known as design choice.
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(a) Controllable rule
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(b) Observable rule

Fig. 1. Example of controllable rule (a), and observable rule (b).

Observable evolutions, in contrast, correspond to moves of reality to decide
how the requirement model looks like in the future. Therefore, designer has
to forecast the reality’s choice with a level of certainty. The response of the
designer can be forecasted and thus incorporated into the design (in order to
have an unattended evolution) or can be deployed at run-time.

We capture the evolution in terms of evolution rule. We have controllable
and observable rule corresponding to controllable and observable evolution.

Definition 1. A controllable rule rc is a set of tuples 〈RM, RMi〉 that consists
of an original model RM and its possible design alternative RMi.

rc =
n⋃

i

{
RM

∗−→ RMi

}

Definition 2. An observable rule ro is set of triple 〈RM, pi, RMi〉 that consists
of an original model RM and its potential evolution RMi. The probability that
RM evolves to RMi is pi. All these probabilities should sum up to one.

ro =
n⋃

i=1

{
RM

pi−→ RMi

}

Fig. 1 is a graphical representation of evolution rules taken from SWIM case
study. Left, Fig. 1(a) describes a controllable rule that a requirements of IKMI
(RE1) has four design choices: A, B1, B2, and B4 (see Table 1 and Table 2).
Right, Fig. 1(b) shows that the initial requirement model ISS-ENT-1 (including
RE1 and RE4) can involve from ISS-ENT-2 (including RE1 to RE4), or remain
unchanged with the probabilities of α and 1−α. The formulae of these rules are
as follows:

rc =
{

RE1 ∗−→ A, RE1 ∗−→ B1, RE1 ∗−→ B2, RE1 ∗−→ B3
}

ro =
{

ISS-ENT-1
α1−→ ISS-ENT-2, ISS-ENT-1

1−α1−−−→ ISS-ENT-1
}

3.2 Game-theoretic account of Probability

In this section, we discuss on probability interpretations and why and how we
employ game-theoretic (or betting interpretation) to account for the probability
of occurrence of observable rule.
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As mentioned, each potential evolution in observable evolution has an asso-
ciate probability; probabilities of all potential evolutions of an observable rule
should sum to 1. However, who tells us these? And what is the semantic of
probability? To answer the first question, we, as system Designers, agree that
Stakeholder will be the one who tells us possible changes in a period of time.
About the second question, we need an interpretation for semantic of probability.

Basically, there are two broad categories of probability interpretation, which
can be called “physical” and “evidential” probabilities. Physical probabilities, in
which frequentist is a representative, are associated with a random process. Evi-
dential probability, also called Bayesian probability (or subjectivist probability),
are considered to be degrees of belief, defined in terms of disposition to gamble
at certain odds; no random process is involved in this interpretation.

To account for probability associated with an observable rule, we can use
the Bayesian probability as an alternative to the frequentist because we have
no event to be repeated, no random variables to be sampled, no issues about
measurability (the system that the designer is going to build is often unique in
some respects). However, we need a method to calculate the value of probability
as well as to explain the semantic of the number. Since the value of probability
is acquired from the requirement eliciting process involving the stakeholder, we
propose using the game-theoretic method in which we treat probability as a
price. This would be easier for stakeholder to reason in terms of price (or cost)
rather than probability.

The game-theoretic approach, discussed by Shafer et al. [27] in Computa-
tional Finance, begins with a game of three players, i.e. Forecaster, Skeptic, and
Reality. Forecaster offers prices for tickets (uncertain payoffs), and Skeptic de-
cides a number of tickets to buy (even a fractional or negative number). Reality
then announces real prices for tickets. In this sense, probability of an event E is
the initial stake needed to get 1 if E happens, 0 if E does not happen. In other
words, the mathematics of probability is done by finding betting strategies.

In this paper, we do not deal with stock market but the design of evolving
software, i.e. we extend it for software design, we then need to change the rules
of the game. Our proposed game has three players: Stakeholder, Designer, and
Reality. For the sake of brevity we will use “he” for the Stakeholder, “she” for the
Designer and “it” for Reality. The sketch of this game is denoted in protocol 1.

Protocol 1
Game has n round, each round plays on a software Ci

FOR i = 1 to n
Stakeholder announces pi

Designer announces her decision di: believe, don’t believe
If Designer believes

Ki = Ki−1 + Mi × (ri − pi)
Designer does not believe

Ki = Ki−1 + Mi × (pi − ri)
Reality announces ri

7



The game is about Stakeholder’s desire of having a software C. He asks
Designer to implement C, which has a cost of M . However, she does not have
enough money to do this. So she has to borrow money from either Stakeholder
or National Bank with the return of interest (ROI) p or r, respectively.

Stakeholder starts the game by announcing p which is his belief about the
minimum ROI for investing M on C. In other words, he claims that r would
be greater than p. If M equals 1, p is the minimum amount of money one can
receive for 1 of investment. Stakeholder shows his belief on p by a commitment
that he is willing to buy C for price (1 + p)M if the designer does not believe
him and borrows money from someone else.

If Designer believes Stakeholder, she will borrow M from Stakeholder. Later
on, she can sell C to him for M(1 + r) and returns M(1 + p) to him. So, the
final amount of money Designer can earn from playing the game is M(r − p).

If Designer does not believe Stakeholder, she will borrow money from Na-
tional Bank, and has to return M(1 + r). Then, Stakeholder is willing to buy C
with M(1 + p). In this case, Designer can earn M(p− r).

Suppose that Designer has an initial capital of K0. After round i-th of the
game, she can accumulate either Ki = Ki−1+M(r−p) or Ki = Ki−1+M(p−r),
depend on whether she believes Stakeholder or not. Designer has a winning
strategy if she can select the values under her control (the M ) so that she always
keeps her capital never decreasing, intuitively, Ki >= Ki−1 for all rounds.

The law of large numbers here corresponds to say that if unlikely events
happen then Designer has a strategy to multiply her capital by a large amount.
In other words, if Stakeholder estimates Reality correctly then Designer have a
strategy to budget for costs that will not run over budget.

4 Making Decision: what are the best things to
implement

One of the main objectives of modeling evolution is to provide a metric (or set of
metrics) to indicate how well a system design can adapt with evolution. Together
with other assessment metrics, designers have clues to decide what an “optimal”
solution for a system-to-be is.

The major concern in assessment evolution is answering the question: “Whether
or not a model element (or set of element) becomes useless after evolution?”.
Since the occurrence of evolution is uncertain, so the usefulness of an element
set is evaluated in term of probability whose interpretation is discussed in 3.2.

In this sense, this work proposes two metrics measuring the certainty of an
element sets as follows.

Max Belief (MaxB): of an element set X is a function that measures the max-
imum belief supported by Stakeholder such that X is useful to a set of top
requirements after evolution happens. This belief of usefulness for a set of
model element is inspired from a game in which Stakeholder play a game
together with Designer and Reality to decide which elements are going to
implementation phase.
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Residual Risk (RRisk): of an element set X is the complement of total belief
supported by Stakeholder such that X is useful to set of top requirements
after evolution happens. In other words, residual risk of X is the total belief
that X is not useful to set of top requirements regard to evolution. Impor-
tantly, do not confuse this notion of residual risk with the one in risk analysis
studies which are different in nature.

Given an evolutionary requirement RM = 〈RM,Ro,Rc〉 whereRo =
⋃

i

{
RM

pi−→ RMi

}

is a one-element set of observable evolution rules, and Rc =
⋃

ij

{
RMi

∗−→ RMij

}

is a set controllable evolution rules applying to potential evolutions of ro, the
calculation of max belief and residual risk is illustrated in Eq. 1, Eq. 2 as follow.

MaxB(X) = max
RM

pi−→RMi∈S
pi (1)

RRisk(X) = 1−
∑

RM
pi−→RMi∈S

pi (2)

where S is set of potential evolutions in which X is useful.

S =
{

RM
pi−→ RMi|∃(RMi

∗−→ RMij) ∈ Rc st.useful(X, RMij)
}

One may argue about the rationale of these two metrics. Because he (or
she) can intuitively measure the usefulness of an element set by calculating the
Total Belief which is exactly the complement of our proposed Residual Risk.
However, using only Total Belief (or Residual Risk) may mislead designers in
case of a long-tail problem.

The long-tail problem, firstly coined by Anderson [1], describes a larger pop-
ulation rests within the tail of a normal distribution than observed. A long-tail
example depicted in Fig. 2 where a requirement model RM might evolve to sev-
eral potential evolutions with very low probabilities (say, eleven potential evo-
lutions with 5% each), and another extra potential evolution with dominating
probability (say, the twelfth one with 45%). Suppose that an element A appears
in first eleven potential evolutions, and an element B appears in the last twelfth
potential evolution. Apparently, A is better than B due to A’s total belief is 55%
which is greater than that of B, say 45%. However, at the end of the day, only

!"!"
!"

#!"

RM

RM1

A
RM2

A

RM11

A
RM12

B
!....

Fig. 2. The long-tail problem.
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Fig. 3. Evolution of the SWIM Security Service.

one potential evolution becomes effective (i.e., is chosen by Reality) rather than
‘several’ potential evolutions are together chosen. If we thus consider every single
potential evolution to be chosen, the twelfth one (45%) seems to be the most
promising and Max Belief makes sense here. Arguing that A is better than B or
versa is still highly debatable. Ones might put their support on the long tail [1],
and ones do the other way round [5]. Therefore, we introduce both Residual Risk
and Max Belief to avoid any misleading in the decision making process that can
be caused when using only Total Belief.

For a better understanding of Max Belief and Residual Risk, we conclude
this section by applying our proposed metrics on the evolution of SWIM Secu-
rity Services discussed in previous section. In Fig. 3, here we have an initial re-
quirement model RM0(ISS-ENT-1,ISS-BP-1) that will evolve to RM1(ISS-ENT-
2,ISS-BP-1), RM2(ISS-ENT-1,ISS-BP-2), and RM3(ISS-ENT-2,ISS-BP-2) with
probabilities of 28%, 18% and 42%, respectively. There are 12% that RM0 stays
unchanged. Each requirement model is represented as a bubble in which there
is a controllable rule with several design alternatives. Each design alternative is
an element set represented as a rounded rectangle that contains elements (such
as A, D, and G) to support (fulfill) requirements of that requirement model.

Table 3 shows some examples, where the first column displays element sets,
and the two next columns show the values of max belief and residual risk. Notice
that the max belief and residual risk in the first row, where the element set is
{A, D}, are n/a which means that we are unable to find any potential evolution
that {A, D} can support all top requirements.

Table 3. Examples of Max Belief and Residual Risk

Element set Max Belief Residual Risk
{A, D,} n/a n/a
{A, E, D, G, F} 18% 70%
{B3, D, G} 28% 60%
{B1, D, G, C} 28% 60%
{B3, D, E, G} 42% 0%
{B2, D, E, F, G} 42% 0%
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Look at the table, {B3, D, E,G} and {B2, D, E, F, G} seem to be the best
choices, since they have a high max belief (42%) and low residual risk (0%). The
zero residual risk means these element sets are surely still useful after evolution.
If the cost of implementation is the second criteria, {B3, D, E,G} seems to be
better if the cost for each element is equal.

5 Handling complex evolution

If the model is too large and complex, instead of dealing with the evolution of
the whole model, we can consider evolution in each subpart. If a subpart is still
too large and complex, we can recursively divide it into smaller ones until we are
able to deal with. Now, suppose that we have a big model divided into several
pieces with evolution rules. We then need to combine these local rules together
to produce the global evolution ones for the whole model. For simplicity, we
assume that:

ASS-1: Independence of evolutions All observable rules are independent. It
means that they do not influence each other. In other words, the probability
that an evolution rule is applied does not affect to that of other rules.

ASS-2: Order of evolutions Controllable evolutions are only considered after
observable evolutions.

As discussed, observable rules are analyzed on independent subparts. Prevail-
ing paradigms of software development (e.g., Object-Oriented, Service-Oriented)
encourage encapsulation and loosely coupling. Evolutions applying to subparts,
therefore, are often independent. Nevertheless, if there are two evolution rules
which influent each other, we can combine them into a single evolution. We
assume that dependent evolutions do happen, but not a common case. Hence
manual combination of these rules is still doable.

The second assumption is the way we deal with controllable rules. If we apply
controllable rules before observable ones, it means we look at design alternatives
before observable evolutions happen. This makes the problem more complex
since under the effect of evolution, some design alternatives are no longer valid,
and some others new are introduced. Here, for simplicity, we look at design
alternatives for evolved requirement models that will be stable at the end of
their evolution process.

After all local evolutions at subparts are identified, we then combine these
rules to a global evolution rule that applies to the whole model. The rationale of
this combination is the effort to reuse the notion of Max Belief and Residual Risk
( 4) without any extra treatment. In the following we discuss how to combine
two independent observable evolution rules.
Given two observable rules:

ro1 =
n⋃

i=1

{
RM1 p1i−−→ RM1i

}
and ro2 =

m⋃

j=1

{
RM2

p2j−−→ RM2j

}
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Fig. 4. Example of combining two observable evolution rules.

Let ro is combined rule of ro1 and ro2, we have:

ro =
⋃

1≤i≤n
1≤j≤m

{
RM1 ∪RM2

p1i∗p2j−−−−−→ RM1i ∪RM2j

}

Fig. 4 illustrates an example of combining two observable rules into a single
one. In this example, there are two subparts of SWIM Security Service: ISS-ENT
and ISS-BP. The left hand side of the figure displays two rules for these parts,
and in the right hand side, it is the combined rule.

In the general case we have multiple steps of evolution i.e. evolution happens
for many times. For the ease of reading, step 0 will be the first step of evolution,
where no evolution is applied. We use RMd

i to denote the i-th model in step d,
and rod,i to denote the observable evolution rule that applies to a model RMd

i ,
i.e. rod,i takes RMd

i as its original model.
The multi-step evolution begins with an original model RM0

1 . This model
can evolve to one of the potential evolutions RM1

i . In the second step, each
RM1

i then also evolves to one of many potential evolutions RM2
j . The evolution

stop after k steps of evolution. If we represent a model as a node, and connect
a model to its potential evolutions as we have done as aforementioned, then we
have a tree-like graph, called evolution tree with k-depth.

Fig. 5 illustrates a two-step evolution, in which observable rules are denoted
as dotted boxes. The original model lays on top part of a box, and all potential
evolutions are in sub boxes laid at the bottom. There are directed edges connect-
ing the original model to potential evolutions. The label on each edge represents
the probability such that original model evolves to the target model.

In Fig. 5, an initial requirement model RM0
1 can evolve to either RM1

1 , RM1
2

or RM1
3 . Likewise, RM1

i evolves to RM2
j , where i=1..3 and j=1..9. Here, we

have a ternary complete tree of depth 2. Generally, the evolution tree of a k -step
consecutive evolution is a complete k -depth, m-ary tree.

We can always collapse a k -step evolution into an equivalent 1-step one in
terms of probability by letting the original model evolve directly to the very
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last alternatives with the probabilities that are multiplication of probabilities of
intermediate steps.

Therefore, any k-step evolution has an equivalent 1-step evolution. Hence all
analyses discussed in 4 are applicable without any modification.

6 Related Work and Conclusion

A majority of approaches to software evolution has focused on the evolution
of architecture and source code level. However, in recent years, changes at the
requirement level have been identified as one of the drivers of software evolu-
tion [4, 12, 31]. As a way to understand how requirements evolve, research in
PROTEUS [24] classifies changing requirements (that of Harker et al [11]) into
five types, which are related to the development environment, stakeholder, devel-
opment processes, requirement understanding and requirement relation. Later,
Lam and Loomes [15] presents the EVE framework for characterizing changes,
but without providing specifics on the problem beyond a meta model.

Several approaches have been proposed for supporting requirements evolu-
tion. Zowgi and Offen [31] work at meta level logic to capture intuitive aspects
of managing changes to requirement models. Their approach involves modeling
requirement models as theories and reasoning changes by mapping changes be-
tween models. However, this approach has a limitation of overhead in encoding
requirement models into logic.

Russo et al.’s [26] propose an analysis and revision approach to restructure
requirements to detect inconsistency and manage changes. The main idea is to
allow evolutionary changes to occur first and then verify their impact on require-
ment satisfaction in the next step. Also based on this idea, Garcez et al [4] aim
at preserving goals and requirements during evolution. In the analysis, a speci-
fication is checked if it satisfies a given requirement. If it does not, a diagnosis
information is generated to guide the modification of specification in order to
satisfy the requirement. In the revision, the specification is changed according
to diagnosis information generated. Similar to Garcez et al, Ghose’s [9] frame-
work is based on formal default reasoning and belief revision, aiming to address
the problem of inconsistencies due to requirement evolution. This approach is
supported by automated tools [10]. Also relating to inconsistencies, Fabrinni et
al.’s [6] deals with requirement evolution expressed in natural language, which is
challenging to capture precisely requirement changes. Their approach employs
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formal concept analysis to enable a systematic and precise verification of consis-
tency among different stages, hence, control requirement evolution.

Other notable approaches include Brier et al.’s [3] to capturing, analyzing,
and understanding how software systems adapt to changing requirements in an
organizational context; Felici et al [8] concern with the nature of requirements
evolving in the early phase of the system; Stark et al [29] study the information on
how change occurs in the software system and attempts to produce a prediction
model of changes; Lormans et al [21] use a formal requirement management
systems to motivate a more structural approach to requirement evolution.

In this work, we have presented a way to represent evolutions on require-
ment models in terms of evolution rules. We used probability to express the
uncertainty of evolutions. We discussed why we cannot simply use Bayesian in-
terpretation of probability here. Instead, we employed game-theoretic approach
to give explanation for the semantic behind probabilities.

Furthermore, we introduced two notions of max belief and residual risk, which
help to reason on evolutionary models. The analysis outcome, together with other
criteria (e.g., cost, risk analysis) provide a clue to decision makers to decide the
optimal solution, which is more evolution-resilient for the system-to-be.

We based our work on a concrete case study of the System Wide Information
Management for air traffic control. The examples not only help to explain better
our idea, but also show the applicability of our approach, though it still needs
more validation in future.

As a part of future work, we plan to instantiate our approach in specific
modeling language such as goal-based language and validate the empirical ap-
plicability of goal-models to the SWIM case study.
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1 Introduction

The changes of models are a central issue in model-
driven software engineering (MDSE). For instance, soft-
ware engineers continuously change and improve their
design models using manual refinement steps or semi-
automated model refactoring transformations. However,
the change of one model may easily introduce inconsis-
tencies with other models developed by other designers.
In case of model-based simulation, the simulator needs
to efficiently detect the changes of the underlying model
(e.g. to highlight steps which can be executed at this
stage).

Unfortunately, the actual notion and representation
of change can be very different in practical tools and
scenarios. While modern domain-specific modeling envi-
ronments offer an explicit set of operations, which can be
executed on the model by the user in graphical editors,
in many other cases, the engineers have no control over
the many ways a model may change: any kind of model
manipulations are possible in any sequence.

In modern modeling environments (like the Eclipse
Modeling Framework, EMF), elementary model changes
are reported on-the-fly by some live notification mech-
anisms to support undo/redo operations. Model ver-
sioning frameworks persist the change history of mod-
els (history-aware log of model changes, which records
causal dependency / timeliness between such changes) in
the form of an external change document. Many complex
refactoring operations frequently require the user to pre-
view the requested changes (expressed as change com-
mands) prior to actually executing them to the model. A
common concept for all these cases is the change delta,
which uniformly captures (the aggregated effect of) a
transaction which caused the model to evolve from a
previous pre-state to a post-state.
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Furthermore, in certain complex tool integration
scenarios, we receive absolutely no information about
changes, i.e., changes just happen without any trace (no-
tification or change log). Other scenarios include those
with observable (but not controllable) changes.

Model transformations, which consume (as input)
or produce (as output) change models, in addition to
the underlying models themselves, are called change-
driven transformations (CDT) [1]. The practically rel-
evant change scenarios impose additional challenges for
CDTs. First, change models are typically restricted to
contain elementary model changes (i.e. the creation and
deletion of certain model elements); change-driven trans-
formations, however, are frequently triggered by complex
(aggregated) model changes carried out by a transaction
on the model (e.g. user edit, refactoring transformation,
etc), which is a key challenge. Moreover, some models
can be non-materialized, i.e. when only an external inter-
face is available for query and manipulation, which tra-
ditionally requires the development of complex adapters
in the modeling environment. In addition, traceability
information can also be limited and externalized (i.e.
cannot be stored in the host models), which imposes
further challenges. Finally, well-formedness restrictions
over a trajectory of changing models can express evolu-
tionary constraints.

Despite the large variety of existing model transfor-
mation languages and tools, the concept of change is not
a first-class citizen in them. In the paper, we argue that
in many application scenarios,making the change as part
of transformations rules is a promising approach. As a
result, appropriate reactions can be based upon observ-
ing the current snaphot of the model and also the way
how the model evolved.

The execution mechanism of change-driven transfor-
mations also differs from traditional batch transforma-
tions. First, uncontrolled model changes (which are re-
ported by a model management framework or detected
by the CDT engine itself) happen in a transaction. Then
based upon the observed changes, certain change-driven
transformation rules may be triggered to manipulate the
models in a controlled way. Naturally, model changes in-
duced by these rules are transactions themselves, which
may thus trigger further reactions.

In this paper, (1) we propose a high-level change-
driven transformation language which allows to unam-
biguously and succinctly capture the nature of change
(as integral part of the language) and to specify the
appropriate reactions. (2) Furthermore, implementation
techniques of CDTs will be discussed which allow to
use a single CDT language uniformly and independently
from the actual change scenario and change representa-
tion including (A) internal representations (notifications
of the modeling environment) vs. externalized change
models, (B) forward vs. backward deltas. The concrete
syntax of the language is introduced as an extension to
the transformation language of the VIATRA2 frame-

work, and it generalizes previous results on live trans-
formations [2,3].

The technicalities of change-driven transformations
will be presented using two motivating case studies.
First, in a model synchronization scenario incremental
synchronization is carried out on a non-materialized tar-
get model (i.e. when only target object identifiers and a
model manipulation interface of the target model are
known, and the rest of the target model does not ex-
ist as an in-memory model within the transformation
framework) with weak traceability links. Then, a case
study from the security requirements engineering domain
will demonstrate how evolutionary (temporal) require-
ments can be specified and incrementally evaluated us-
ing change-driven transformations.

The rest of the paper is structured as follows. Sec-
tion 2 provides a categorization of changes to be ad-
dressed in the paper, and details the main challenges of
change-driven transformations. In Section 3, a motivat-
ing model synchronization case study is introduced as a
running example for our paper. Section 4 describes the
novel language for change-driven transformations. Sec-
tion 5 outlines a prototype system architecture for the
various cases of change scenarios. Section 6 exemplifies
the use of our CDT language in the model synchroniza-
tion scenario. Specifying and checking evolutionary con-
straints will be the goal of another case study presented
in 7. Section 8 provides a detailed discussion on the ad-
vantages and limitations of our approach. Finally, Sec-
tion 9 summarizes related work and Section 10 concludes
our paper.

2 Overview of the approach

Changes are inherent to modeling. In model-driven engi-
neering, models are rarely static, in fact, they are evolv-
ing continuously. Most of this evolution is driven by user
input in modeling environments and editors. In other
cases, changes are automatically introduced by batch
model manipulations such as model import, transforma-
tion and export.

Change is considered to be the transition of a model
from a pre-state, to a post-state, and the difference be-
tween the two is called the change delta (or model delta).
This terminology is independent of the granularity and
the abstraction level; it applies for changes that are just
elementary model manipulation operations as well as for
batch transactions or even for complex business deci-
sions.

A model-driven design setup requires these changes
to be propagated along a chain of tools into derived mod-
els or generated source code. The workflow may also in-
volve the merging of models, back-annotating the results
of an analysis performed on a transformation’s target
model to the source model, or identifying interesting or
erroneous parts within models. Thus there is a need for
capturing the changes precisely.
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In this paper, we propose a novel model transfor-
mation technology designed to address this problem by
operating on changes of models as first-class citizens. We
first propose (in Section 2.1) a classification scheme for
changes that we aim to handle uniformly with change-
driven transformations. We introduce a taxonomy that
will be useful to describe which cases our change-driven
transformation approach aims to deal with, and what
its advantages are. Section 2.2 explains the challenges of
change-driven transformations, and Section 2.3 outlines
how the rest of the paper will address them.

2.1 Aspects of change

We define four perspectives (control, observability, in-
formation source, delta representation), distinguishing
several different ways to perceive changes to a model.
An overview is shown in Fig. 1.

2.1.1 The controllability perspective There are scenar-
ios where changes are controllable, meaning only an ex-
plicitly defined set of changes is permitted at each state
of the model. A common example is when models are
required to be edited exclusively using dedicated editors
that only allow a limited set of high-level domain-specific
model manipulations. Such modeling languages are of-
ten described by generating graph grammars [4,5], where
the grammar rules coincide with the editing rules.

However, in a wider range of scenarios, the transfor-
mation designer has no control over the possible ways a
model may change during its lifecycle. It can happen
through manual editing in a visual tool, batch refac-
toring, model transformation, model merging, etc. Any
type of model manipulation is possible: creation/dele-
tion of entities and relations of arbitrary type, modify-
ing attribute values or element names, in any arbitrary
sequence, in unforeseeable ways. Furthermore, it is even
possible that models temporarily violate certain domain-
specific well-formedness constraints during the changes.
In this case, we need to handle non-controllable changes.

2.1.2 The observability perspective After the transfor-
mation iscompleted and any derived model(s) are cre-
ated, it is possible that the target models are changed
without any model management support (e.g. when the
generated source code is changed in model-to-text sce-
narios). When the transformation is invoked next time, it
can only access the current updated version (post-state),
without having any additional information sources re-
vealing how the models were changed since the last
transformation execution. In this case, the change is in-
visible.

However, with support from a model management
environment, there may be ways to trace the changes
made to a model, such as change logs. When the trans-
formation system has to determine the appropriate reac-

tions to execute, it can take advantage of such informa-
tion sources. We consider the change observable if it can
be deduced what the pre-state was, what change delta
has been applied to it, and what the resulting post-state
is.

2.1.3 The source of information perspective If the
change is observable, further distinction is possible based
on what kinds of information sources are available. As
previously mentioned, a change consists of a pre-state, a
post-state and a change delta between them. The change
is observable if and only if at least two of these three in-
formation sources are directly available, since the third
one can be derived. Although this derivation is possible,
it might not always be efficient in an actual implementa-
tion. Therefore we distinguish three scenarios based on
which two of these three information sources are avail-
able, acknowledging that each scenario offers a different
kind of support for implementing change propagating
transformations. A similar categorization is presented
in [6].

Some model management systems may preserve a
previous version of the model from the last execution of
the transformation, in addition to the current version.
This can be the case if version control is enabled in the
model repository. When the pre-state and the post-state
are directly observable, we call it the snapshot scenario
(state-based in the terminology of [6]).

In other situations, a description of the change may
be available before it was applied on the model. An ex-
ample of such a situation would be applying a patch
onto the model, that consists of changes performed on
a remote copy of the model. This is also the case when
change requests have to be analyzed in a change man-
agement system, before the changes are actually carried
out. If the pre-state and the delta are directly available,
we call it the command scenario (forward delta in the
terminology of [6]), and the delta can also be called a
change command.

Finally in the history scenario (called backward delta
in [6]), the post-state is directly available along with the
delta (which can be called a change history). A typi-
cal example would be manually editing a model in an
editor environment, which produces notifications of the
editing operations after they have been carried out, or
saves transaction logs (e.g. redo stack) together with the
updated version of the model.

It is a rare but possible case that all three infor-
mation sources are directly available (this is called the
change-based case in [6]). For example, an editor may
save change logs, while the model repository captures
the pre-state and the post-state as well. In this case any
of the implementation strategies proposed for the above
three scenarios is applicable, and the choice can be made
on the basis of efficiency.



4 Gábor Bergmann et al.

Fig. 1 Change scenarios (ignoring controllability)

2.1.4 The delta representation perspective In the his-
tory and command scenarios, the change delta is avail-
able as an information source. In this case, we define a
fourth perspective that indicates how the change delta
is perceived by the model transformation environment.

In the documented change scenario, the delta is avail-
able as a data structure called the delta document, that
specifies exactly how the pre-state and the post-state
differs. One example (history scenario) is a model edi-
tor maintaining a redo log during editing, that may be
retained when the model is saved. The previously men-
tioned change management system with change requests
can be thought of an example in the command scenario.

In the live change scenario, the change is experi-
enced on-the-fly, as it happens by continuously receiv-
ing run-time notifications on the change. The notifica-
tions (e.g. method calls) can be issued before or after
the actual change (command or history). The notifica-
tion granularity (frequency) can range from the level of
elementary model manipulations to aggregated effects
of longer transactions, smoothly transitioning into the
documented case. A live scenario frequently happens in
model editing environments and centralized model man-
agement solutions. As a great advantage of this scenario,
changes to a source model can be on-the-fly reflected in
the target model, and other kinds of live transformation
can be performed efficiently, facilitating valuable feed-
back [3,7].

2.2 Transformations of change

Change driven model transformations are model trans-
formations which consume changes of the host model
M as input (see Fig. 2), and turn these changes into
model manipulation operations, native operations (such
as asynchronous messages, or external API calls), or
traceability records for persistent storage of changes.

Essentially, a change driven transformation rule is
enabled by some changes in the host model. The actual
change representation can be of different nature (in ac-
cordance with Fig. 1), e.g. a sequence of model manipu-
lation operations or a change delta.

Fig. 2 Change-driven transformations

2.2.1 Challenges for change-driven transformations
This interpretation of change-driven transformations
needs to be refined in many practical application scenar-
ios with different model handling characteristics, which
are discussed in the following.

– Unified handling of complex changes in all
change processing scenarios. Analogously to
high-level formalisms of model and graph transfor-
mations, change-driven transformations should sup-
port a declarative, high-level specification of changes
that can be seamlessly integrated into a ”host” model
or graph transformation language. Moreover, this
formalism (and the underlying execution semantics)
should support a uniform specification and execu-
tion model for all change processing scenarios dis-
cussed previously, in order to relieve the transforma-
tion developer from a significant amount of manual
coding (notification, adapters etc.), especially in the
case of non-controllable changes. As an additional
benefit, this independence will make a transforma-
tion portable across different change scenarios with-
out modifying its code.
The language can then be used as (i) a complete
stand-alone formalism for handling model transfor-
mation scenarios such as incremental model synchro-
nization, model simulation (animation) in discrete
systems, and on-the-fly well-formedness constraint
evaluation. Additionally, (ii) it is also useful as an in-
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termediate formalism bridging the gap between the
technical challanges of the different change scenar-
ios and high-level languages tailored for certain uses
of model transformations (e.g. QVT Relations for
model synchronization, or other GT-based languages
for behavioral simulation).

– Ability to handle traditional model transfor-
mation scenarios.
Ideally, the change-driven rule formalism should sup-
port traditional execution semantics as well (based
on an empty pre-state), so that the rules can be used
without additional changes e.g. to perform the ”first”
transformation phase in model synchronization sce-
narios.

– Handling both materialized and non-
materialized models.
A typical assumption of most model transformation
approaches is that the host model M is available as a
materialized model in a common model store (e.g. as
in-memory EMF models inside the MT framework).
However, in some model transformation scenarios,
this may not be technically feasible (e.g. for perfor-
mance reasons – the model may be too large to fit in
memory, or not trivial to import and convert). Prac-
tically, this means that only an external interface of
its native environment is available for querying and
manipulatingM , but still using some model transfor-
mation approach is desirable to incrementally syn-
chronize the model (e.g. for maintaining consistent
views).

– Traceability models are used universally in many
MT scenarios for correspondence mapping and also
to preserve some information on the execution state
of the transformation itself. This information (along
with negative application conditions) is mostly used
to help the specification of incremental rules that
only operate on changed parts of the model (e.g. in-
cremental change propagation in model synchroniza-
tion). In controllable, non-controllable and invisible
change processing scenarios, our change-driven tran-
formation technology will automatically maintain a
cache containing the (historical) information about
the pre-state. As a result, traceability models (as well
as rule preconditions) can be simplified significantly:
they are only used for correspondence mapping be-
tween source and target models, but not for storing
the past. For instance, old values of attributes would
no longer be required to be stored as part of the trace-
ability model to support attribute changes, which is
typically the case for existing transformation tech-
nology.

– Checking properties over evolving models can
also be a specification challenge for change-driven
transformations. Here certain constraints can be evo-
lutionary in the sense that they need to be evaluated
over a sequence of model evolution steps and not over
a single snapshot of the model. Traditional constraint

languages (like OCL) can only handle these proper-
ties by encoding the trajectory as part of the models,
which may blow up models significantly.

In addition to providing support for these tradi-
tional traceability use-cases, change-driven transforma-
tions also allow the changes themselves to be represented
as models (attached to the host model on which they
are evaluated). Moreover, the model-based representa-
tion should be completely equivalent to the in-memory
representation of live changes so that both the ”docu-
mented” and ”live” change processing scenarios can be
handled uniformly.

2.3 Contributions of the paper

As a summary, change-driven transformations take
change information as inputs and produce change infor-
mation as output. Taking this abstract view of CDTs, we
first propose a language and execution semantics (Sec-
tion 4) for capturing change-driven transformations in a
uniform way. Afterwards, Section 5 shows an implemen-
tation architecture to support executing the same lan-
guage in different change scenarios. Finally, we demon-
strate (in Section 6) how change-driven transformations
can automate a model synchronization problem in a tool
integration context.

3 Case study: synchronization for deployed
workflow models

Our motivating scenario is based on an actual tool in-
tegration environment developed for the SENSORIA
and MOGENTES EU research projects. Here high-level
workflow models (with control and data flow links, arte-
fact management and role-based access control; the con-
crete syntax is illustrated in Fig. 3(a)) are used to de-
fine complex development processes which are executed
automatically by the JBoss jBPM workflow engine in
a distributed environment consisting of Eclipse client
workstations and Rational Jazz tool servers. The process
workflows are designed in a domain-specific language,
which is automatically mapped to an annotated version
of the jPDL execution language of the workflow engine.
jPDL is an XML-based language (see Fig. 3(b) for the
example that corresponds to Fig. 3(a)), which is con-
verted to an XML-DOM representation once the process
has been deployed to the workflow engine.

A major design goal was to allow the process de-
signer to edit the process model and make changes with-
out the need for re-deployment. To achieve this, we im-
plemented an asynchronous incremental code synchro-
nizing model transformation. This means that (i) while
the user is editing the source process model, the changes
are recorded. Then (ii) these changes can be mapped in-
crementally to the target jPDL XML model without re-
generating it from scratch. Additionally, (iii) the changes
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(a) Domain-specific workflow
model

(b) JPDL XML Document (c) jPDL in-
terface

Fig. 3 Artefacts of the motivating scenario

can be applied directly on the deployed XML-DOM rep-
resentation through jBPM’s process manipulation DOM
programming interface (Fig. 3(c)), but, (iv) in order to
allow the changes to be applied to the remote workflow
server, the actual XML-DOM manipulation is executed
on a remote host asynchronously to the operations of the
process designer.

3.1 Metamodels of the case study example

The transformation scenario features the following mod-
els (Fig. 4):

– The domain-specific workflow language models are
materialized in the modeling environment of the ed-
itor, which is integrated with the Viatra2 transfor-
mation engine. These models conform to the meta-
model shown in Fig. 4(a). This language features
workflows comprised of Control nodes of various
types (such as Invocation which corresponds to an
invocation of a (remote) tool service function, and
WaitState which corresponds to a wait state of the
execution process).

– The jPDL models are not stored in the transforma-
tion engine, but directly in the jBPM execution en-
vironment, in an XML-DOM-style format. However,
to ease the understandability of further examples,
we present the relevant fragment of the jPDL meta-
model (Fig. 4(b)) in an ECore-like syntax. In this
representation, the jPDL process graph is comprised
of hierarchically embedded (through parentID refer-
ences) JPDLNodes that can have various JPDLAt-
tributes storing user-definable information (we use

them to store domain-specific information contained
in the source model, such as invocation parameters,
tool service function names etc.).

– Finally, traceability or correspondence models are
stored in the transformation engine, conforming to
the simple metamodel shown in Fig. 4(c). These
external traceability nodes store only ”weak” links,
which means that ID references point to domain-
specific elements as well as to jPDL DOM elements.
This way, external models can also be referenced.

(a) Domain-specific workflow metamodel

(b) jPDL DOM metamodel
fragment

(c) External traceability
metamodel

Fig. 4 Metamodels of the example

3.2 Change example

Fig. 5 shows a sample workflow instance model, a se-
quence of model manipulation steps, and the resulting
modified state of the model. On the left side, two snap-
shots of the workflow model are shown, with the differ-
ences (the delta) highlighted (the jPDL target model is
omitted for clarity).

The delta in-between could correspond e.g. to a GUI
operation that inserts a new invocation between two
neighbors in the control flow. If this workflow model had
been transformed into a jPDL process before, the two
models have to be re-synchronized after the change. The
transformation has to react to this change, i.e. create a
new JPDLNode that corresponds to Invocation i3, in-
sert it into the sequence, and map the input and output
parameters.
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Fig. 5 Example model change

3.3 Constraints and Transformations with Graph
Transformation

While model transformations may be implemented in
any generic programming language, specialized model
transformation tools offer declarative, rule-based trans-
formation languages to support the easy and concise defi-
nition and efficient execution of transformations. Several
tools use Graph Transformation (GT) [8] as theoretical
underpinnings. The approach of graph transformation
captures models as (typed, attributed) graphs. Parts of
the graph can be described by declarative queries called
Graph Patterns (GP) [9,10]. A pattern match is a con-
formant subgraph of the model; the match maps each
pattern variable (nodes, edges) of the pattern to a con-
crete model element. The graph pattern matcher mod-
ule is responsible for finding matches for patterns. A
graph pattern may have a Negative Application Condi-
tion (NAC) to exclude certain cases. The model manipu-
lation steps are defined by Graph Transformation Rules
(GTR), using a GP called left-hand-side (LHS) to spec-
ify the condition when and where the rule is applicable,
and another GP called right-hand-side (RHS) to declar-
atively indicate how the graph should be changed at the
matches of the LHS (e.g. by specifying elements to be
added, removed, or updated).

For readers unfamiliar with the basic concepts of
graph transformation, Appendix A provides the defini-
tions in the same way as they will be used in the pa-
per, along with explanations and examples. The textual
concrete syntax featured in listings extends the the GT
parts of the transformation language [11] of theViatra2
framework.

Example. Figure 6(a) shows a graph pattern that
matches invocation nodes in the workflow model that
have not been mapped to any jPDL nodes yet. This
mapping information is preserved by traceability links,

represented graphically by dashed lines. The rectangle
marked by NEG encloses a subpattern defining a nega-
tive application condition; the two involved domains are
highlighted for clarity. Figure 6(b) reveals a more com-
plex pattern, that finds a transition edge connecting two
such invocations in the workflow model, that have al-
ready been mapped to jPDL nodes, but the correspond-
ing jPDL transition element does not exist yet. Taking
a closer look at these patterns, we can identify the vari-
ables and pattern constraints of both the positive pat-
terns and the NACs; they are summarized by the table
in Figure 6.

(a) Unmapped invocation (b) Unmapped transition

Variables
I I1, N1, I2, N2,

ItoN1, ItoN2, Tr
Constraints

I:Invocation I1:Invocation
I2:Invocation
N1:JPDLNode
N2:JPDLNode
ItoN1:traceability, I1 to N1
ItoN2:traceability, I2 to N2
Tr: transition, I1 to I2

NAC Variables
I, N , ItoN N1, N2, JT , To

NAC Constraints
N :JPDLNode JT :JPDLTransition
ItoN :traceability, I to N JT in N1

To:JPDLTransition.to,
JT to N2

Fig. 6 Textual Representation of the Graph Pattern of
Fig. 6(b)

pattern noJPDLTr(I1 , N1, I2, N2) =
{
Invocation(I1); // entity constraint
traceability(ItoN1 , I1, N1); // relation constraint
JPDLNode(N1);
neg pattern connected(N1, N2) = { // NAC definition
JPDLTransition(JT) in N1;
JPDLTransition.to(To, JT , N2);

}
JPDLNode(N2);
traceability(ItoN2 , I2, N2);
Invocation(I2);
Invocation.transition(Tr , I1, I2);

}

Listing 1 Example Graph Pattern

Listing 1 displays the same pattern as Figure 6(b).
The bodies of patterns mainly consist of constraints ex-
pressed as predicates on variables. Entity constraints
(e.g. type restrictions) are represented by unary pred-
icates, while relation constraints (capturing the struc-
tural connectivity of the underlying graph model) are
expressed by ternary predicates (edge variable, source,
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target). The name of the predicate is the node or edge
type name, respectively; the list of variables affected by
the constraint follows in parentheses. The pattern and its
NAC subpatterns have a set of interface variables that
are visible (exported) from outside.

4 A Language for Change-driven Rules

4.1 Requirements and motivation for change-driven
rules

For many transformation engineers, declarative, rule-
based techniques offer an easy-to-understand way to
specify model transformations. Consequently, we pro-
pose such a high-level change-driven rule formalism
where transformation rules are augmented with a guard.
The guard is evaluated in context of the changes that the
graph model has undergone to determine whether the
rule is an appropriate reaction to the change. In rule-
based expert systems, this idea of change as a distin-
guished representation of information has been used for
decades; for instance, in the well-known terminology of
Event-Condition-Action (ECA) systems [12], our guards
correspond to the notions of ”triggering event” and the
contextual condition of rules. As a complete adaptation
of these techniques to model transformation technology
(which is able to handle all relevant change processing
scenarios using a unified, high-level formalism) does not
yet exist to our best knowledge, we believe that such
a language – architected as an extension to an existing
graph transformation language – will serve practical ap-
plications well, in a number of application scenarios (e.g.
model synchronization [1], on-the-fly constraint valida-
tion [3] and model animation [13]).

There are a number of requirements that such a lan-
guage needs to fulfill:

– reactivity to be able to specify dynamic model
changes as events that activate a rule

– conciseness to result in compact specifications for
change-driven transformations

– high-level specification to be able to abstract from
irrelevant details

– intuitiveness so that rules can be easily understood
by those who are familiar with other model transfor-
mation languages

– expressiveness in order to be able to specify a large
class of change-driven transformations using this lan-
guage.

In this section, we define the concepts of change-
driven transformations by proposing a language as an
extension of the Viatra2 transformation language. A
quick overview of the language concepts is presented in
Fig. 7, which will be gradually discussed in the section:
Section 4.2 defines change patterns, while Section 4.3
specify change driven transformation rules on the foun-
dations of change patterns.

Fig. 7 Simplified metamodel of the proposed transformation
language

Throughout the definitions, we heavily rely on some
well-known concepts of Graph Transformation; for a
more detailed introduction see Appendix A. These con-
cepts include Graph Model G, Graph Pattern P , Graph
Pattern with negative application conditions (NAC)
PN = 〈P,N∗〉, attributed Graph Models and Graph
Patterns, and finally Graph Pattern matching, with
G,m |= P meaning that m is a match for pattern P in
graph G. Additionally, we also use the concept of Graph
Transformation Rules consisting of a left-hand-side and
a right-hand-side graph pattern (LHS and RHS), and the
notion of applying the rule on a match of LHS, replacing
it with an image of the RHS.

4.2 Change Patterns

We define high-level guards for change-driven rules in the
form of Change Patterns. In addition to conventional
graph patterns matched against the post-state, guards
should also contain constructs for expressing the differ-
ence between the pre-state and post-state in the form of
change queries. An appearance query indicates a graph
pattern with a new match in the post-state, while the
disappearance query indicates that a match of a given
graph pattern is invalidated by the change. An update
query captures that an attribute changes from an old
value to a new one, i.e. it detects if an old value of an
attribute disappeared, or a new value appeared.

The benefit of using graph patterns instead of ele-
mentary changes as appearance/disappearance queries is
that a change pattern will match regardless of the order
of elementary model manipulations that ultimately sat-
isfied the appearance / disappearance / update queries.
Thus it is irrelevant what the last operation was that
e.g. completed the pattern of the appearance query. As
a result, a single change pattern compactly captures a
large set of different change sequences.
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Definition 1 (Change Pattern) Change Patterns
(CP) can be defined as a tuple CP = 〈PN,P ∗

+, P
∗
−, U

∗
:=〉,

where

– PN = 〈P,N∗〉 is the main graph pattern with pos-
itive pattern P and negative application conditions
N∗.

– P ∗
+ is a set of graph patterns {Pi = 〈Vi, Ci〉} called

appearance queries. Each appearance query Pi

with variables (pattern elements) Vi and their con-
straints Ci represents that a certain graph pattern
appears due to the change. Pi is allowed to share vari-
ables with P .

– P ∗
− is a set of graph patterns {Pj = 〈Vj , Cj〉} called

disappearance queries. Each disappearance query
Pj with variables (pattern elements) Vj and their con-
straints Cj represents that a certain graph pattern
disappears due to the change. Pj is allowed to share
variables with P .

– U∗
:= is a set of tuples {Uh = 〈vMod

h , attrh, v
pre
h , vposth 〉}

called update queries. Each update query represents
that a certain model element has one of its attributes
changed, where vMod

h ∈ V (P ) is a variable of P that
represents the model element, attrh is the attribute
name, and the (optional) variables vpreh , vposth ∈ V (P )
represent the pre-state and post-state values of the
attribute, respectively.

– Appearance, disappearance and update queries alto-
gether are called change queries.

– The set of common variables of a change query
and the main pattern is called its interface.
Ii = Vi

⋂
V (P ), Ij = Vj

⋂
V (P ) and Ih =

{vMod
h , vpreh , vposth }.

– The pre-state pattern Ppre(CP ) =
⋃

Pi∈P∗
−
Pi

⋃
P

summarizes disappearance queries and the main pos-
itive pattern, i.e. all patterns representing existence
in the pre-state.

– The post-state pattern Ppost(CP ) =⋃
Pi∈P∗

+
Pi

⋃
P summarizes appearance queries

and the main positive pattern, i.e. all patterns
representing existence in the post-state.

The match of change patterns (Fig. 8) is defined
against a pair of graphs Gpre and Gpost, such that Gpost

is derived from Gpre by some (maybe only observable,
but not controllable) model manipulation. Thus the sets
of model entities (Entpre and Entpost) and relations
(Relpre and Relpost) may intersect on elements that were
preserved by the step from Gpre to Gpost. By definition,
Dom (the immutable set of attribute values including all
integer values, strings, etc.) is the same in both cases.
Here Gpre and Gpost represent the pre-state and post-
state respectively, but their presence in the definition
does not imply that the concept of change patterns is
restricted to the snapshot scenario (see Section 2.1) –
only to unify the semantic discussion.

All variables of the change pattern that represent at-
tributes are required to be “bound”, in order to avoid

Fig. 8 Change Pattern concepts

unintended challenges such as equation solving. There
are multiple ways to bind an attribute variable: either by
declaring it as the attribute value of a model element, or
by participating in the interface (header parameter) of
a change query, or by being the result of a function (e.g.
addition) on bound attribute variables. Similar restric-
tions hold for the graph patterns in NACs and change
queries.

Definition 2 (Match of Change Pattern) A match
of the Change Pattern CP = 〈PN,P ∗

+, P
∗
−, U

∗
:=〉 in

〈Gpre, Gpost〉 is the mapping m = 〈mP ,m∗
+,m

∗
−〉 :

CP → 〈Gpre, Gpost〉, where

– mP : PN → Gpost is a match of PN , in the post-
state Gpost: Gpost,mP |= PN .

– For each Pi ∈ P ∗
+, the set m∗

+ contains a mapping
mi : Pi → Gpost, such that
– Gpost,mi |= Pi, i.e. mi a match of pattern Pi in
graph Gpost,

– mi(v) = mP (v) for interface variables v ∈ Ii, i.e.
mi interfaces with the match of the main pattern,
and

– Gpre,mi % |=Pi, i.e. the same mi is not a match
in the pre-state.

– For each Pj ∈ P ∗
−, the set m∗

− contains a mapping
mj : Pj → Gpre, such that
– Gpre,mj |= Pj, i.e. mj a match of pattern Pj in
graph Gpre,

– mj(v) = mP (v) for interface variables v ∈ Ij, i.e.
mj interfaces with the match of the main pattern,
and

– Gpost,mj % |=Pj, i.e. the same mj is not a match
in the post-state.

– For each Uh = 〈vMod
h , attrh, v

pre
h , vposth 〉 ∈ U∗

:= update
query,
– Gpre |= mP (vMod

h ).attrh = mP (v
pre
h ), i.e. the

pre-state value of attribute attrh of vMod
h was

vpreh , and
– Gpost |= mP (vMod

h ).attrh = mP (v
post
h ), i.e. the

post-state value of attribute attrh of vMod
h is vposth ,

and
– mP (v

pre
h ) %= mP (v

post
h ), i.e. there was a change

between two different values, and
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– if vpreh or vposth is omitted from the update query,
its value is considered to be existentially quanti-
fied.

For a match m = 〈mP ,m∗
+,m

∗
−〉 : CP → 〈Gpre, Gpost〉,

– the pre-state match is defined as mpre =⋃
Pj∈P∗

−
mj

⋃
mP , i.e. the unification of the match

components corresponding to the pre-state pattern
Ppre(CP ); consequently mpre is a match of the pre-
state pattern in Gpre, i.e. Gpre,mpre |= Ppre(CP );

– the post-state match is defined as mpost =⋃
Pi∈P∗

+
mi

⋃
mP , i.e. the unification of the match

components corresponding to the post-state pattern
Ppost(CP ); consequently mpost is a match of the post-
state pattern in Gpost, i.e. Gpost,mpost |= Ppost(CP ).

Note that this definition is deliberately asymmetric
for Gpre and Gpost, as the main pattern PN is inter-
preted on Gpost only. The same holds for P ∗

+ and P ∗
−.

It is also worth noticing that the language feature of
update queries is a syntactic sugar. While it helps to con-
cisely define change patterns in common cases and also
potentially to increase CP matching efficiently, neverthe-
less appearance and disappearance queries alone provide
enough expressive power. In particular, update query
Uh = 〈vMod

h , attrh, v
pre
h , vposth 〉 ∈ U∗

:= is equivalent to
the disappearance of the value assignment (for attribute
name attrh) between vMod

h and vpreh , and the appearance
of the assignment for the same attribute name between
vMod
h and vposth . While not indicated before, the defi-
nitions for pre- and post-state patterns Ppre(CP ) and
Ppost(CP ) are actually intended to take this representa-
tion of update queries into account.

4.2.1 Extensions Although not presented in the formal
definition to provide better focus on the core contribu-
tion, there is a wide range of straightforward extensions
to the presented version of the CP formalism (which is
actually part of our language), including negative appli-
cation conditions in the patterns used as change queries,
nested NACs, change queries attached to a NAC of PN
(or even a nested NAC) instead of P , etc. Without in-
cluding a proof, it is worth pointing out that if these
features are available, then the expressiveness of CPs
becomes equivalent to first-order formulae over the set
of predicates describing the pre-state and the post-state.

This suggests that the CP formalism is powerful
enough justifying the choice to be used to trigger change-
driven rules. There are also some extensions which we
will use in later examples of the paper: for convenience,
both graph patterns and CPs can be written as the com-
position of smaller patterns (even facilitating reuse) us-
ing the find keyword; this can be thought of dependen-
cies between (change) patterns.

4.2.2 Example. Figures 9(a) and 9(b) show the CPs
that detect deleted workflow transitions (in order to

delete the jPDL transition), and newly created jPDL
transitions (to be mapped back into the workflow do-
main), respectively. NACs are often visually represented
as special sub-patterns (enclosed in a “NEG” box), the
rectangles marked by appear or disappear indicate that
the enclosed pattern is an appearance or disappearance
query, respectively. As said earlier, the CP of Figure 9(b)
is insensitive to the last operation that caused the jPDL
transition to appear, it can be the creation of the tran-
sition, redirecting, moving under a different JPDLNode,
etc. Listing 2 displays the same CP with a textual syn-
tax. As an extension to the graph pattern language,
change queries are available as a (sub)pattern definition
with appear or disappear prefixes, also having a set of
exported or visible variables (including the interface vari-
ables) listed in parentheses.

(a) Detecting deleted work-
flow transition

(b) Detecting created jPDL
transition

Fig. 9 Example Change Patterns

change pattern newJPDLTr(I1 , N1 , I2, N2, JT) =
{
Invocation(I1);
traceability(ItoN1 , I1, N1);
JPDLNode(N1);
appear pattern (N1 , JT , N2) = {
JPDLTransition(JT) in N1;
JPDLTransition.to(To, JT , N2);

}
JPDLNode(N2);
traceability(ItoN2 , I2, N2);
Invocation(I2);
neg pattern (I1, I2) = {
Invocation.transition(Tr, I1, I2);

}
}

Listing 2 Example Change Pattern

For demonstration purposes, these CPs are matched
against the transaction depicted in Figure 5. The pre-
and post-states are shown in Figures 10 and 11, re-
spectively. The workflow model is indicated alongside
its counterpart in the jPDL domain, but the traceability
links and other details such as attributes are not shown.
Traceability links are present between w0 and p0, i1 and
n1, i2 and n2, di1a and pei1a, etc. We assume that the
workflow model was changed (in Fig. 11), namely a new
i3 invocation was created in the workflow, di3 input and
do3 output specification were created within the invoca-
tion, a new t3 transition edge was created from the new
invocation to i2, and the old transition t1 was retargeted
to i3. The jPDL model, however, was not changed; trans-
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formation rules will have to detect the discrepancy and
propagate the changes to the target model.

Fig. 10 Pre-State of Example Transaction

Fig. 11 Post-State of Example Transaction

The CP in Figure 9(b) will not match against this
change, as it contains an appearance query in the jPDL
domain, but the jPDL target model was not changed.
However, the CP in Figure 9(a), has a match. The cur-
rent snapshot contains the two invocations and their cor-
responding JPDLNodes, but there was the t1 transition
relation between i1 and i2 which is not present any-
more (it was not actually deleted, just redirected). As
the model manipulation did not change the jPDL part,
the jPDL representation of this transition, namely jt1,
is still present in the current model, so this is a match of
the CP. More precisely, the disappearing variable Tr in
the change pattern will be substituted for transition edge
t1, I1 in the pattern is mapped to i1 in the workflow, I2
is mapped to i2, N1 to n1 in the jPDL domain, N2 to
n2, JT to jt1, To to jt1t, finally ItoN1 and ItoN2 to
the traceability links that are not shown. The occurrence
of the CP will trigger the rule, that will be responsible
for removing jt1.

4.3 Change-Driven Rules

Using our Change Pattern formalism, we can now intro-
duce change-driven transformation rules. GT-style rules
consisting of a CP as a LHS/guard (instead of a con-
ventional LHS pattern) and a graph pattern as RHS
are Change-Driven Rules (CDR). A CDR specifies a re-
action to the CP used as its guard. As explained on
Fig. 12, the reaction is a controlled change transforming
Gpost into an even newer state Gnew. The transforma-
tion substitutes the match of the guard (more precisely,
the match of the post-state pattern Ppost(CP )) with the
image of the RHS pattern, with the same semantics as a
GT rule application. In fact, the application of the CDR

will be defined by a reduction to an application of a GT
rule.

Fig. 12 Change-driven rule concepts

Definition 3 (Change-driven Rule) Change-driven
rules CDR = 〈CP,RHS〉 are specified by a guard
change pattern CP = 〈PN,P ∗

+, P
∗
−, U

∗
:=〉 defining the ap-

plicability of the rule, and a postcondition (or right-
hand side) positive pattern RHS which declaratively
specifies the result model after rule application. The post-
state pattern Ppost(CP ) and RHS are allowed to share
variables.

Obviously, RHS may only use/delete elements that are
not already deleted in the CP, hence the usage of the
post-state pattern. Ppost and its match mpost in Gpost

will also be used to define the application of the rule.
CDR application is the replacement of the post-state
pattern with the RHS, or equivalently, the application of
a conventional GT rule obtained from the change-driven
rule with Ppost substituted for LHS.

Definition 4 (Elision of a Change-driven Rule)
The elision of a Change-driven Rule CDR =
〈CP,RHS〉 is the Graph Transformation Rule RCDR =
〈Ppost(CP ), RHS〉, whose left-hand-side is the post-state
pattern of the guard Change Pattern CP , and the right-
hand-side is shared with CDR.

Definition 5 (Application of Change-driven
Rule) A change-driven rule CDR = 〈CP,RHS〉 can be
applied on a guard match m = 〈mP ,m∗

+,m
∗
−〉 : CP →

〈Gpre, Gpost〉 after a change from pre-state Gpre to
post-state Gpost. The application of the CDR results in
a new graph model Gnew derived from Gpost, where the
transition from Gpost to Gnew is identical to the applica-
tion of the elision GT rule RCDR = 〈Ppost(CP ), RHS〉
on post-state match mpost. If CP has no matches in
〈Gpre, Gpost〉, then CDR is not applicable.
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4.3.1 Extensions While the declarative specification of
GT rules and CDRs can be very concise in some cases
(especially with pattern reuse through composition), in
some cases it is more practical to also associate imper-
ative actions to the rule that should be executed on
the match of the guard. Examples include logging or
debugging, chaining related rules, performing nontriv-
ial computation, etc. Therefore the transformation lan-
guage used in our examples contains an extension to the
core CDR formalism, so that an action sequence can
be attached to the rules using the action keyword. This
technique provides a complete imperative alternative to
using the declarative RHS formalism.

Change-driven rules vs. GT rules. It is worth point-
ing out that both traditional GT rules and an earlier
event-driven rule formalism (graph triggers in [3]) can be
thought of as special cases of the more expressive CDR
formalism. CDR rules reduce to GT rules in case there
are no change queries, while CDR rules are equivalent
to graph triggers in the case of an empty main pattern
(graph triggers use the appearance/disappearance of the
entire precondition pattern as guard condition).

4.3.2 Example Figure 13 and Listing 3 show the CDR
that propagates transitions created in the jPDL domain
back to the workflow model. The guard CP, identical to
Figure 9(a), activates whenever a transition disappears
between two Invocations, which is still mapped to a tran-
sition element between the corresponding JPDLNodes.
The RHS does not contain the JPDL transition element
anymore, therefore it will be deleted when the rule is
applied.

For example, as already discussed, the CP guard will
have a match on the pair of states depicted in Figures 10
and 11; the rule will be applied as a reaction, resulting
in the deletion of the JPDL transition jt1 (and thus the
connecting edge jt1t) that previously corresponded to
the workflow transition.

4.4 Validation

In the following, we summarize our arguments on why
this transformation language extension answers the chal-
lenges of Section 2.2.1 and satisfies the requirements
given in Section 4.1:

– reactivity: using change patterns as guards for
transformation rules, the transformation can react
to changes in the model.

– conciseness: change queries capture the relevant in-
formation in the delta without the need for indi-
vidually addressing possible sequences of elementary
changes.

– high-level specification: model changes can be ab-
stractly captured as appearance and disappearance

Fig. 13 Propagate deletion of Transition

cdrule propagateDelWFTr(I1, N1, I2, N2) =
{
guard find delWFTr(I1 , N1, I2, N2, JT);
postcondition pattern noJT(I1, N1 , I2 , N2, JT) =
{
Invocation(I1);
traceability(ItoN1 , I1, N1);
JPDLNode(N1);
Invocation(I2);
traceability(ItoN2 , I2, N2);
JPDLNode(N2);

}
}

Listing 3 Example Change Driven Rule

of graph pattern matches; and change-driven trans-
formations are also independent from the source of
the triggering changes.

– intuitiveness: our language extends declarative
static model queries and model manipulation (as pro-
vided by graph patterns and graph transformation
rules) in a natural way by introducing change pat-
terns (which are guards that specify elements which
must appear or disappear) and change driven rules
(which describe reaction to changes).

– expressiveness: change patterns allows the trans-
formation designer to specify rules which can dis-
tinguish between identical post-states of the model
based on the modification trajectories which led to
that state, without (i) having to encode these mod-
ifications into complex traceability models and (ii)
bloating transformation rules with them. In other
words, change-driven rules extend the expressive
power of graph transformation rules by high-level
queries corresponding to the changes exhibited by
the graph.

5 Implementation Architecture

The following sections outline a system architecture that
implements change-driven transformation. Solutions to
the following task items are required:

– (positive and negative) graph pattern matching of
the CP’s main pattern in the post-state

– evaluating and matching appearance and disappear-
ance queries

– evaluating update queries
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– matching change patterns, using the solutions of the
above three tasks

– applying change driven rules on matches of the guard
change pattern

The first three of these tasks require different imple-
mentation techniques in different change scenarios (see
Section 2.1), to take advantage of the benefits and avoid
unnecessary operations that may degrade performance.
First, Section 5.1 discusses our proposed solutions to the
first three tasks in all change scenarios except for the live
case. Next, Section 5.2 focuses on the live scenario with
its unique execution model. Finally, the last two task
items are addressed in Section 5.3.

5.1 Change query evaluation in documented or invisible
change scenarios

Documented history and command scenarios In the doc-
umented change scenarios, either the pre-state or the
post-state of the model is available along with a delta
document recording the changes. In order to match ap-
pearance and disappearance queries, existing graph pat-
tern matcher algorithms have to be slightly modified to
operate on a graph that contains the elements of the
available snapshot and also the elements that only oc-
cur in the delta document. This graph should distinguish
unchanged, deleted and created elements.

A match of a positive graph pattern is only consid-
ered valid in the post-state, iff it contains no deleted
elements. A pattern with NACs has a valid match in the
post-state iff it is a valid post-state match of the positive
pattern, and all NAC matches (if any) are disappearing
(see later). A pattern match is considered appearing iff
it is valid in the post-state (as defined above), and con-
tains at least one created element, or has at least one
NAC match (which is – as stated above - disappearing).
Finally, a pattern match is considered disappearing if
it contains no created elements, all of its NAC matches
(if any) are appearing, and there is either at least one
deleted element of the positive match, or a NAC match
(which must be appearing).

Using these rules, the pattern matcher can deter-
mine the match set of the main pattern in the post-
state, as well as that of the appearance and disappear-
ance queries. Attribute updates are straightforward to
be evaluated based on the delta document.

Snapshot scenario In the snapshot scenario, both the
pre-state and the post-state are directly available, there-
fore change query evaluation is reduced to fairly simple
steps. An appearance query is satisfied if the pattern is
matched in the post-state, but the same match is in-
valid in the pre-state; and vice versa for disappearance
queries. Therefore evaluating these queries require a tai-
lored graph pattern matcher that is similar to algorithms
dealing with negative patterns. Finally, whether and how

a certain attribute was updated can be detected using
referenced value comparison.

However, one of our assumptions here was that if a
model element exists in both states, it is trivial to rec-
ognize that they are in fact the same element (this is
actually required in the definition of Change Pattern).
This is possible if model elements have a unique identi-
fier that is preserved across different versions. Unfortu-
nately, in some modeling environments this is not guar-
anteed; for example, generic EMF objects are not identi-
fiable by default in a way that is valid across snapshots
(but fortunately EMF provides both live notifications
and redo stacks instead). In this case, the two versions
of the model have to be reconciled against each other
(by either a generic heuristic or a domain-specific way)
before the changes can be computed and CDR can be
applied; see the related literature on model comparison
[16].

Invisible scenario As only the post-state is available,
post-state matching of the main pattern is trivial in this
case, but evaluating change queries is not. The common
solution to this problem has significant time and space
overhead: the transformation creates a shadow copy of
the model each time it is invoked. On the next transfor-
mation run, the model itself represents the post-state,
but the shadow copy preserves the pre-state, therefore
the change queries can be evaluated. Of course, there is
no need to replicate the entire model; it is sufficient to
store the match sets of patterns used as appearance and
disappearance queries, and to preserve the attribute val-
ues corresponding to element types and attribute names
involved in update queries. The appearance and disap-
pearance queries can be evaluated by matching the pat-
terns against the post-state and comparing the match
set against the one preserved in the shadow copy. Like-
wise, update queries can be evaluated by comparing the
current attribute value against its shadow copy.

To prevent inconsistencies, the shadow copy should
be inaccessible to normal model editing operations,
which can be achieved either storing it separately (e.g. in
a different file), or by using special model element types,
markers, etc., that visual editors and other transforma-
tions ignore. If it is stored separately, the problem of
preserving model element identity has to be dealt with,
similarly to the snapshot scenario.

A widespread practice [15,17] is to use the traceabil-
ity model (sometimes called reference model or corre-
spondence model) in a way that it preserves the LHS
(or a significant subset thereof) of all executed rules.
Thus the traceability connections essentially store a copy
of the source model, thereby providing a shadow copy
functionality. In those model transformation approaches
where this is not handled automatically, significant man-
ual effort is required for maintaining this shadow copy.
With change-driven transformations, however, the plat-
form can provide change queries as a service, hiding im-
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plementation details. The hidden implementation will
involve an automatic shadow copy mechanism in the in-
visible change scenario (and less resource intensive solu-
tions in the other change scenarios). This allows a much
simpler maintenance of traceability in many cases (espe-
cially bidirectional synchronization), sometimes as sim-
ple as using the same name for a source and target ele-
ment, as there is no need to manually preserve the entire
LHS.

5.2 Change query evaluation in live change scenarios

Challenge of live scenarios While all techniques for the
documented scenarios are functionally correct in the live
scenario as well, there may be an additional important
requirement in this case. Live notifications can be used to
perform live transformation, where change-driven rules
can be executed on-the-fly. Since live notification is re-
ceived about changes that are in progress, and reac-
tions are triggered during an interactive session, pattern
matching is required to be responsive and efficient. We
propose an architecture capable of efficiently matching
change patterns and applying change-driven rules with
live monitoring of the model as it evolves.

The entire architecture is illustrated in Fig. 14. The
rest of Section 5.2 discusses how change queries are eval-
uated efficiently in live scenarios.

Fig. 14 Implementation architecture for change-driven rules
in the live scenario

Incremental Pattern Matching The aim to execute
transformations without the costly re-evaluation of un-
changed parts of the evolving (source) model is called
source incrementality. Source incrementality can be
achieved by employing incremental pattern matching
techniques; for example, the RETE algorithm [18] was
used in [19]. The key idea of incremental pattern match-
ing is that matches of a pattern are cached to be readily
available at any time, and this cache is incrementally up-
dated whenever notifications are received about changes

in the underlying model. Obviously, such a technique re-
sults in increased memory consumption in order to store
match sets. Furthermore, these stored result sets have
to be continuously maintained whenever the model is
changed, causing an overhead on model manipulation.
Nevertheless, benchmarks [20] indicate that incremental
pattern matching can improve performance or scalabil-
ity by several orders of magnitude in certain scenarios.
Moreover, incremental pattern matching leads to easy
discovery of appearing or disappearing pattern matches,
thus it can be used to efficiently implement the change
query feature of change patterns by incremental calcu-
lation of matching set differences.

Having received change notifications, the incremen-
tal pattern matcher shows an up-to-date picture of the
post-state. This is true even in the command scenario
where these changes might not have been applied to the
model itself, still retaining the pre-state. Therefore the
post-state graph pattern matching of the main pattern
can be performed by the incremental pattern matcher in
both history and command scenarios. In the history sce-
nario, the model itself reflects the post-state, therefore a
regular (local search) pattern matcher is also applicable
for this task, if it is preferrable for performance reasons.

Delta Monitoring A delta monitor is a component that
can be attached to a match set cache of the incremen-
tal pattern matcher at any time, and it will start to
record changes affecting the match set from that time
on. At any point in the future, the delta monitor will be
able to report about which new matches appeared and
which matches disappeared since it was initialized. This
is efficiently achieved by hooking into the internal no-
tification/update mechanism of the incremental pattern
matcher. Changes of a single match (e.g. the same match
appearing and then disappearing later) may invalidate
each other, therefore the delta monitor really reflects (a
projection of) the delta between the two states, and not
just recorded history. A slightly modified delta monitor
can be used to remember attribute updates.

Change query evaluation Change queries can be effi-
ciently evaluated using delta monitors and incremental
pattern matching. Before the change is performed (or
notifications are received), a delta monitor is to be at-
tached (or reinitialized, if already attached) onto the in-
crementally maintained match set of each graph pattern
that occurs as a change query within a CP. After the
change, the contents of the delta monitors will reflect
the graph pattern matches that have appeared or disap-
peared. This complements the post-state reflected by the
incremental pattern matcher (or alternatively, in the his-
tory scenario, the model itself), to provide all necessary
information for matching change patterns.

5.3 Implementing Change-Driven Rules
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Matching Change Patterns Change patterns are equiva-
lent to an extended graph pattern formalism, where the
set of admissible pattern constraints contains change sets
of pattern matches as hyperedge constraints [21]. In the
end, the match set of a change pattern can be determined
from the match set of the change queries, the main pos-
itive pattern and the negative patterns; and such a pat-
tern matcher architecture is conceptually similar to ex-
isting ones dealing with negative application conditions.
Therefore graph pattern matching mechanisms can be
used to evaluate change patterns, based on the partial so-
lutions (change queries and post-state pattern matching
of the main pattern) obtained differently in each change
scenario.

Rule execution The sequence of elementary model ma-
nipulation operations executed by any transformation
unit, GUI-based manipulation, model merge or other
job can be arbitrarily segmented into transactions, that
are assumed to result in a consistent state of the af-
fected model. The transaction is the unit of change that
CDRs will react to; the starting and the end points of
the transaction will be considered the pre-state and the
post-state, respectively. In documented change scenar-
ios, the whole change process between the given pre-
and post-states can be considered a single transaction.
In live scenarios, as notifications may be continuously
sent, it is a nontrivial question how to segment trans-
actions; it helps if there is some support for explicitly
defining transaction boundaries and commit points. A
typical transaction can be e.g. the execution of single
functionality through the UI, corresponding to multiple
elementary operations.

Upon the end of each transaction, the change pat-
terns are evaluated to determine which change-driven
rules are applicable. If there are any such CDRs, they are
applied on the model, using algorithms that are identical
to regular GT rule application. As this rule application
phase modifies the model, it can be considered a change
transaction itself, with its effects wrapped into a sepa-
rate transaction. At the end of this second transaction,
the effects of executed CDRs can be reacted to as well, as
long as there are triggered CDRs. This follow-up loop is
actually a live scenario, regardless of the circumstances
of the original triggering change. This queue-based exe-
cution schema has been previously elaborated in details
in [3].

6 Elaboration of the case study

6.1 Overview of the approach

In this section, we demonstrate the concept and the ap-
plication of change-driven transformations (Sec. 2), rely-
ing on the novel change-driven transformation formalism
of Sec. 4, by the elaboration of the motivating scenario
described in Section 3.

6.1.1 Challenges In the current paper, we investigate
a model synchronization scenario where the goal is to
asynchronously propagate changes in the source model
MA to the target model MB (Fig. 15). This means that
changes in the source model are not mapped on-the-fly
to the target model, but the synchronization may take
place at any later time. However, it is important to point
out that the synchronization is still incremental, i.e. the
target model is not re-generated from scratch, but up-
dated according to the changes in the source model.

Fig. 15 Model synchronization driven by change models

Moreover, our scenario also requires that MB is not
materialized in the model transformation framework,
but accessed and manipulated directly through an ex-
ternal interface IF of its native environment. This is a
significant difference to traditional model transformation
environments, where the system relies on model import
and export facilities to connect to modeling and model
processing tools in the toolchain. Here, we only assume
the existence of very simple (untyped) traceability links.
These links need not be actual persisted references; it is
sufficient to establish “virtual” connections defined by
using the same ID or name for the two elements in the
two models. Moreover, we will also discuss various oper-
ations for processing change models:

– Processing live historical changes. Based upon
the notification mechanism of the underlying model
management framework, we can process changes on-
the-fly as they are generated by the user or a model
transformation. In our case study example (see Sec-
tion 6.3), these changes (of the source model) will be
used in a model synchronization scenario to produce
change commands (that can be applied to the target
model).

– Processing documented command changes.
Change commands represented as models themselves
can be automatically applied to models. More pre-
cisely, one can combine the current snapshot of the
target model M (representing the initial state) and
a change model CM to create the final snapshot M ′.
An example for applying a change model will be pre-
sented in Section 6.4.
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6.1.2 Technology As the source model MA is in the
model space of the transformation engine, model changes
are directly observable through a notification mecha-
nism. These changes are processed by change-driven
rules (changeA in Fig. 15). However, as the target model
MB can only be manipulated asynchronously, we de-
sign the transformation in a way that instead of direct
target model manipulations, we encode the changes of
the target models as change command model instances
CMB . These models conform to a change command
metamodel (presented in Fig. 16 of Sec. 6.2), and repre-
sent parametrized model manipulation operations.

Hence, the actual model transformation itself is
implemented as a mapping between the (in-memory)
changes of the source language A to change models cor-
responding to change commands that can be applied in
language B (see middle part of Fig. 15). This transfor-
mation is described later in details in Sec. 6.3.

As change command models represent a trace of
model evolution, they may be automatically applied to
models (see right part of Fig. 15). More precisely, such
a transformation combines a snapshot of the model MB

(representing the initial state) and a change command
model CMB (representing a sequence of operations
applicable starting from the initial state) to create
the final snapshot M ′

B . In other words, the change
command model CMB represents an “operational
difference” between M ′

B and MB , with the order of
operations preserved as they were actually performed
on MB .

As change-driven transformations can transparently
process both observable and persisted changes (Sec. 2),
we use our rules to map change command models into
native function calls that directly manipulate the exter-
nal target model (Sec. 6.4).

6.2 Change models

First, we briefly overview how to persist changes as
change models. For this elaboration, we only concern
observable (and non-controllable) changes (the represen-
tation of controllable changes - e.g. as graph transforma-
tion rules - has been discussed extensively in literature
[22,23]).

To clarify and capture the notions of domain-specific
model changes precisely, we present a simplified clas-
sification system for jPDL model changes based on a
metamodel (Fig. 16).

By the terminology of Section 2.1, both histori-
cal and command -type changes represent a difference
(delta) between a pre-state and a post-state of the model.
They differ only in their interpretation: histories are
valid with respect to a post-state, while commands may
be applied to a pre-state. Hence, in our model-based tax-
onomy, both notions are represented by the jPDLCom-

Fig. 16 Change command metamodel for jPDL

mand type. The next relation enables the representa-
tion of operation sequences (transactions). Change com-
mands contain ordered elementary change operations.

This metamodel uses unique IDs to refer to (non-
materialized) model elements (as defined in the jPDL
standard); since jPDL documents also follow a strict
containment hierarchy, creation operations (as depicted
in Fig. 16) refer to a parentID in which an element
is to be created. In the follow-up examples of our
case study, we will make use of CreateJPDLNode and
CreateJPDLAttribute to illustrate the usage of this
domain-specific change history metamodel.

6.3 Propagating changes by change-driven
transformations

In this section, we describe a sample transformation
rule where the creation of an Invocation in the domain-
specific workflow language is mapped to the creation of
a corresponding jPDL Node and its attribute (Fig. 17).
This is a practical elaboration of the ”live historical”
scenario described in Section 2.1.

We use a change-driven graph transformation rule,
which defines a guard condition that triggers when a new
Invocation node is added to the domain-specific work-
flow model. The guard consists of a context definition
(the common pattern referring to the already existing
Workflow node) and the change pattern (referring to
the newly created Invocation node). In the postcondi-
tion part, the corresponding jPDL-specific change com-
mand model elements, along with the traceability model
are declared. As Invocations are represented by jPDL
Nodes with an attribute node, the target change model
will consist of two “create”-type elements, chained to-
gether by the jPDLCommand.next relation. The simple
traceability model consists of two mapping nodes that
connect the Invocation node to its counterparts in the
target model (the JPDLNode and the JPDLAttribute).
In this example, we make use of the fact that both source
and target models have a strict containment hierarchy
(all elements have parents), which is used to map corre-
sponding elements to each other:
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transformation mapInvocation () = {
/* This is a common static part of the pattern ,
* matched for all change patterns
* and postconditions .
*/

common pattern ()= {
Workflow(WF);

}
/* This cdrule processes the creation of
* an invocation node
*/

cdrule newInvocation () = {
guard appear pattern (I) = {

Invocation(I);
Workflow.nodes(_,WF,I);

}
postcondition pattern ()={
/* create a JPDL Node and its corresponding
* attribute node in the JPDL -DOM */
CreateJPDLNode(JN) {

nodeID -> I.ID;
parentID -> WF.ID;

}
CreateJPDLAttribute(JA) {

nodeID -> I.ID+".function";
parentID -> I.ID;
targetValue -> I.functionName;

}
jPDLCommand.next(_,JN,JA);
// traceability models
// one for connecting the invocation node I1
// to the JPDL node
TraceRef.External {

sourceIDs -> [I.ID];
targetIDs -> [JN.ID];

}
// and one to its attribute
TraceRef.External {

sourceIDs -> [I.ID];
targetIDs -> [JA.ID];

}}}

Fig. 17 Example change-driven transformation rule

– Based on the new node I in the source model, we
calculate the target parent’s ID parentID as WF.ID.

– Similarly, the target jPDL node’s ID is I.ID
– The jPDL Attribute node’s ID will be calculated as

’I.ID’.function to place the target node under the
target parent.

– Finally, the attribute functionName designates a par-
ticular function on a remote interface which is in-
voked when the workflow engine interprets an Invo-
cation workflow node. It is represented by a separate
node in the jPDL XML-DOM tree. The targetValue
attribute of the additional CreateJPDLAttribute ele-
ment is derived from the appropriate attribute value
of Invocation node in source model.

Fig. 18 Example execution sequence

Sample execution sequence Fig. 18 shows an example
execution sequence of this rule. The sequence starts with
a model consisting only of a top-level container node w0
of type Workflow. In Step 1, the user creates a new Invo-
cation node i0 inside w0. The change-driven transforma-
tion engine triggers the execution of mapInvocation()
only if the subgraph w0 – i0 is complete. In Step 2,
mapInvocation() is fired, and the appropriate jPDL
change command model instances are created.

6.3.1 Handling attribute changes Updates to attribute
values in the source model can be easily processed by
change-driven transformation rules. Fig. 19 illustrates
a case where the functionName attribute of Invocation
nodes is being observed; this rule maps a change in the
attribute value to a Change Command that can later be
executed on the target model that will update the jPDL-
DOM attribute value accordingly. The target node in
the jPDL model (jPDL ID) is identified by using the
(external) traceability model element referenced in the
common pattern of the rule.

Note that for bidirectional synchronization with at-
tributes, traditional GT-based formalisms would require
storing the attribute value in the traceability model in
order to be able to detrmine the direction of change.

6.3.2 Mapping complex operations Certain (simple)
changes of the source model may require to be mapped
to complex operations on the target model. This is typi-
cally the case when the mapping between source and tar-
get languages is not a one-to-one correspondence, but a
more complex abstraction. All such complex operations
can be performed even when using change commands
instead of direct model manipulation, as the example in
Fig.20 illustrates.
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/* This cdrule handles the change
* of the function ’s name
*/
cdrule changeFunctionName () = {
common pattern(I1,jPDL_ID) = {
TraceRef.External {
sourceIDs -> [I1.ID];
targetIDs -> [jPDL_ID ];

}
guard change pattern () = {
Invocation(I1);
update I1.functionName from _OldName to NewName;

}
postcondition pattern ()={
setAttribute {
nodeID -> jPDL_ID.function;
attributeName -> ’targetValue ’;
attributeValue -> NewName;

}}}

Fig. 19 Attribute update processing by CDTs

/* This cdrule handles deletion of an
* invocation node in a complex way.
*/
cdrule mapDeleteInvocation () = {

common pattern () = {
Workflow(WF);

}
guard change pattern jpdlNodeOrphaned(JPDL_ID) = {
disappear pattern invocationNode(I2) = {

Workflow.nodes(_,WF,I2);
Invocation(I2);

}
TraceRef.External {

sourceIDs -> [I2.ID];
targetIDs -> [JPDL_ID ];

}
}
postcondition pattern ()={

/* do not delete corresponding JPDL node (if existent)
* but first (1) mark it as deleted
* and second (2) remove it from the process graph
* by replacing it with a wait state
*/

setAttribute(SA) {
nodeID -> JPDL_ID;
attributeName -> ’isDeleted ’;
attributeValue -> ’true ’;

}
CreateJPDLWaitState(CJWS) {

nodeID -> JDPL_ID;
parentID -> WF.ID;

}
jPDLCommand.next(_SA ,CJWS);

}
action {

// connect all preceding nodes to the wait state
let PreviousCommand = undef in
forall PN with find precedingNode(PN,I2) do seq {

new setReference(SR) {
nodeID -> PN.ID;
referenceID -> ’transition ’;
referenceValue -> CJWS.nodeID;

}
new jPDLCommand.next(_,previousCommand ,SR);
update previousCommand = SR;

}
}}}}

Fig. 20 Mapping changes to complex operations

In Fig. 20, the change-driven rule mapDeleteInvoca-
tion() is shown. This rule triggers if a previously mapped
Invocation node is deleted (indicated by the combination
of the TraceRef.External model element and a change
pattern that triggers when an Invocation disappears

from the graph). Upon the registration of this event,
this rule will formulate the following commands to be
performed on the target model:

1. First, the corresponding jPDL node will be located
and marked as deleted (by setting the isDeleted at-
tribute to true with a setAttribute-type jPDLCom-
mand). Next, a new JPDLWaitState will be created
to replace the deleted JPDLNode.

2. Finally, a more complex modification sequence is de-
fined that disconnects the JPDLNode from the jPDL
process graph, by overwriting the ”transition” refer-
ences of all its preceding nodes to point to the newly
created WaitState.

Note that the newly created jPDLCommand ele-
ments are connected sequentially by using the Previous-
Command helper variable through the forAll cycle in
Fig. 20.

6.4 Applying change models to non-materialized models

In this section, we elaborate a technique of process-
ing ”documented historical” changes (in the terminol-
ogy of Section 2.1). On the macro level, change mod-
els are represented as chains of parametrized elementary
model manipulation operations. As such, they can be
processed linearly, proceeding along the chain until the
final element is reached (thus modeling the execution of
a transaction). The consumption of a change model ele-
ment is an interpretable step with corresponding actions
performed in the context defined by the change model’s
references.

As Fig. 15 shows, we apply change models to ma-
nipulate non-materialized models through an interface.
The speciality of this scenario is that instead of working
on directly accessible in-memory models, the transfor-
mation engine calls interface functions which only allow
basic queries (based on ids) and elementary manipula-
tion operations. In this case, change models are very use-
ful since they allow incremental updates, as they encode
directly applicable operation sequences.

In order to apply change commands to external mod-
els, the transformation engine is augmented with a ”na-
tive model access interface” component. This interface
allows for query and manipulation operations as fol-
lows: for the jPDL models of the motivating scenario,
we mapped the XML-DOM process model manipula-
tion programming interface to Viatra2’s native func-
tion API. The following native functions are used:

– getElementById(ID): retrieves a jPDL element iden-
tified by its unique ID.

– createElement(parentRef,targetID): creates a new
jPDL DOM element as a child of its parent (identified
by parentRef ), with a given unique ID (targetID).

– addElement(DocID,elementRef): adds the element
elementRef to the jPDL DOM identified by DocID.
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– addElementToParent(parentRef,elementRef): adds
the element elementRef to the jPDL DOM’s node
identified by parentRef.

– setContents(elementRef,text): sets the textual con-
tent of the given DOM element (elementRef ) to text.

In this scenario, the mapping rules and the simple
traceability implementation (direct id mapping) allow
for the changes to be mapped and applied in a straight-
forward way, without complex navigation and queries on
the target model.

Example transformation rule In this case study ex-
ample, we define a change-driven application rule
based on domain-specific change commands for the
jPDL XML-DOM model (Fig. 16). Fig. 21 shows the
newCompoundJPDLNode() rule, which is used to inter-
pret a subsequence of change model chains for the
jPDL domain. More precisely, this rule’s guard matches
for a condition that describes that a new jPDL node,
along with its ”function” attribute is to be created. In
the change command model representation, this corre-
sponds to the pair of CreateJPDLNode and CreateJPD-
LAttribute change model fragments. The rule uses na-
tive functions createElement, addElement to instanti-
ate new jPDL XML elements directly in the deployed
process model on the workflow server; and setContent
is used to overwrite the attribute node’s textual content.

The upper part of Fig. 21 shows the final three steps
of our running example. In Step 3, the initial state of
the deployed workflow model, the process definition cor-
responding to Workflow w0 is still empty. During the
rule execution, first, the jPDL Node i0 is created (Step
4), and then in Step 5, the attribute node is added with
the appropriate textual content. The entire algorithm
which applies change models follows the linear sequence
of operations along the relations with type jPDLCom-
mand.next ; the first operation in a transaction can be de-
termined by looking for a change model fragment with-
out an incoming jPDLCommand.next edge.

7 Case study on evolutionary constraints

A second motivating scenario is from the domain of secu-
rity requirements engineering, using the Air Traffic Man-
agement case study of the SecureChange European FP7
FET project. A requirements model assists security en-
gineers to capture security-related aspects of the system,
to analyze the security needs of the stakeholders, and to
argue about potential security threats. The concepts of
a security requirements modeling language such as Se-
cureTropos [24] typically include actors and their goals,
security-critical information assets and other resources,
actions to fulfill goals, trust relationships, delegation of
responsibility over assets, goals or actions, etc. An im-
portant role of security requirement models is to support

/*
* This CD rule maps JPDL nodes to the
* external JPDL -DOM tree.
*/

transformation mapNode () = {
/*
* This cdrule handles the case when a new JPDL node
* is added together with its "function" attribute.
* This is checked by giving an attribute condition
* on the ID suffix.
*/

cdrule newNode () = {
guard change pattern () = {

appear pattern () = {
JPDLNode(JN) {

JPDLAttribute(JA);
check(JA.nodeID == JN.nodeID+".function");

}
}

}
action {
// create JPDL Node - Step 4
// we manipulate external models here
call DOM.addElement(JPDLRoot ,

DOM.createElement(JN.parentID ,JN.nodeID ));
// create JPDL Attribute - Step 5
let DOM_ANode=DOM.createElement(JN.nodeID ,JA.nodeID );
DOM.setContent(DOM_ANode , JA.value);
call DOM.addElementToParent(JN.nodeID ,DOM_ANode );

}}}

Fig. 21 Applying change models through the jPDL XML-
DOM API

reasoning about security properties by formal [25] or in-
formal [26] argumentation techniques in an early stage
of development. These arguments may support or refute
the satisfaction of security requirements, and are built
upon assumptions and ground facts. Some of these facts
originate from the security model, and are called evi-
dence.

7.1 Metamodel for security requirements

To introduce this case study, we use a simplified secu-
rity metamodel shown in Fig. 22. The model contains
Arguments, that record a formal or informal reasoning
process conducted in the past. An Argument is linked to
requirement model elements that support it as evidence.
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The requirements model presented here is a simplified
actor model based loosely on i* [27].

An Actor is a stakeholder or an autonomous part of
the system. Tasks are performed by Actors to support
fulfilling requirements. Actors can provide Resources
that are valuable data assets. Communication elements
represent that a sender Actor makes some data assets
available to a receiver Actor. Several important element
types such as Goals or Trust are missing, as they are not
relevant to the example scenario; Communication here
replaces a more general class of Delegation relationships
for the sake of simplicity; attributes are also omitted.

Fig. 22 The security metamodel used in the example

7.2 Sample model

Fig. 23 shows a security model for air traffic communica-
tion systems. The three actors are Air Traffic Controller
(ATCO), Airlines (AL) and Catering Services (CS). Ac-
tor ATCO provides resource RAS (runway assignment),
and communicates it to AL. Actor AL provides resource
MO (meal orders), and communicates it to CS.

The integrity of data asset RAS is security-critical,
because if terrorists were able to change RAS, they
could make planes crash. To ensure the integrity ofRAS,
ATCO carries out the following Tasks:

– T1 “Use data security and secure communication
technologies”, to make sure the Air Traffic Controller
is in control of RAS.

– T2 “Conduct a yearly IT security training of the
whole staff”, to reduce the likelihood of social en-
gineering attacks.

– T3 “Enforce policy that every manual decision has
to be approved by a second member of the controller
staff”, to reduce the impact of human error or malice.

– T4 “Perform a quarterly security screening of employ-
ees”, monitoring whether an employee has big debts,
or can be blackmailed into helping criminals, or has
befriended terrorists, etc. to reduce the likelihood of
malice.

To decide whether the integrity of RAS will be main-
tained, security experts conduct an informal argumenta-
tion analysis ARG. Based on the model and their back-
ground knowledge, they judge that they are confident
in this security requirement. Tasks T1−4 and Resource
RAS are used in their argument, so they are recorded in
the model as the evidences for ARG.

Fig. 23 An example security model and two evolutions

7.3 Example evolutions

An evolution triggering re-evaluation A possible evolu-
tion of the model is the following: to cut back costs,
ATCO plans to reduce the frequency of security screen-
ings, so T4 will be modified to ”Perform a yearly secu-
rity screening of employees”. Thus change is inflicted on
an evidence for ARG. Since we have no formal way to
determine whether the modified Task can fulfill the se-
curity needs, the argumentation experts are alerted to
revisit argument ARG. They decide e.g. that the secu-
rity requirement is still met with the weakened guaran-
tees, based on regulation, previous experience and a risk
analysis conducted by Risk Engineers.

An evolution not requiring re-evaluation Another possi-
ble evolution is that the communication between AL and
CS is now routed through a new Actor SWIM (System-
Wide Information Management). This change can have
a wide influence on the system, but it does not invalidate
the argument ARG, as no evidence of ARG was involved
in the change. Therefore this time there is no need for the
argumentation experts to exert further manual effort.

7.4 Evolutionary constraints

Security requirement models have their set of well-
formedness constraints, ensuring that the model is mean-
ingful and consistent. We discussed graph pattern-based
on-the-fly validation of well-formedness constraints in
a preceding work [3]. These constraints are static in
the sense that they only restrict the current state of
the model. However, there are cases where evolutionary
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constraints are needed, that can take into account the
change that is applied to the model.

In the example evolution outlined in Section 7.3, in-
validating informal arguments was such a problem. For-
mal and informal argumentation is carried out using
the requirements model, to determine which security re-
quirements are met. This argumentation is a laborious
and costly process requiring significant human expertise.
In evolving security-critical applications, it is important
that the argumentation is only carried out for those se-
curity requirements that are influenced by the change of
the model. Thanks to the traceability from Argument
to evidence, there is enough information to determine
which arguments need to be re-evaluated. The argument
has to be invalidated if one of its evidences is involved in
a change. This, however, cannot directly be determined
by using only the present (post-state) of the security
model.

The challenge is to provide a straightforward and
efficiently evaluated declarative language for this pur-
pose. We propose on-the-fly, incremental evaluation for
a wide range of evolutionary constraints that can be im-
plemented as an efficient reactive mechanism by using
Change Patterns and Change-Driven Rules.

7.5 Change-Driven Transformation for Evolutionary
Constraints

We propose establishing a set of CDRs that would flag
invalidated arguments as invalid and request argumenta-
tion analysis. The key difference between each of these
rules is the guard Change Pattern. The recommended
strategy is to identify types of changes that warrant a
re-evaluation of the argument, and define a rule for each
of them.

To aid in building CPs and CDRs, some
helper Graph Patterns are defined first. Graph
Pattern validArgument(A) captures an Argu-
ment A that has not been invalidated, while GP
evidenceOfArgument(A,E) captures an argument
A and a model element E which it references as an
evidence.

The CDR invalidateUponEvidenceUpdate() is ac-
tivated when an attribute of an evidence element
is updated. The rule is guarded by a CP that
contains an update query linked to a match of
evidenceOfArgument(A,E) and validArgument(A).
The following code sample shows an initial version of
this rule in a simplified syntax:

change pattern evidenceUpdated(A,E) {
// static condition
find validArgument(A);
find evidenceOfArgument(A,E);
// event: element updated!
// attr.name and values are ignored
update E._ from _ to _;

}
cdrule invalidateUponEvidenceUpdate(A,E) {

guard evidenceDeleted(A,F,M);

action {
call flag_as_invalid(A);

}
}

As an example for the application of this CDR, sup-
pose that the evolution described in Section 7.3 is car-
ried out. This means that Argument ARG is a match
of validArgument(A); at the same time, ARG and T4

(“Perform a quarterly security screening of employees”)
constitute a match of evidenceOfArgument(A,E).
Whenever an evolution updates an attribute of this
Task (e.g. downscale to yearly screening to cut costs,
as in the example), the update query will detect this,
making (ARG, T4) a match of the change pattern
evidenceUpdated(A,E) and activating the CDR. The
rule will flag the argument ARG for re-evaluation; argu-
mentation experts will be alerted to revisit the argumen-
tation and decide whether the looser policy is enough to
maintain security needs.

Similarly, a second CP could capture arguments
whose evidence is deleted. Due to the flexibility of the
CP formalism, additional similar rules can be created
depending on system-specific policies; for instance the
argument should be invalidated if a model element is of
a certain type, and edges of certain types are connected
to (or disconnected from) it.

8 Discussion

Now we discuss the potential advantages and limitations
of change-driven transformation over traditional model
transformation techniques.

8.1 Theoretical discussion

In this theoretical discussion, we primarily focus on
graph transformation based approaches, which provide
the closest correspondence to our techniques, moreover,
they have a sound, well-established underlying theory.

Theoretical expressiveness of change driven transforma-
tions While not formally proven in the current paper
for space considerations, it is worth pointing out that
for each change-driven transformation system (CDTS) a
corresponding graph transformation system (GTS) can
be derived, which simulates the CDTS. As a result, our
CDT formalism is not more expressive in a pure theo-
retical point of view, but it is still Turing complete.

The construction essentially builds upon storing ex-
plicitly the pre-state as a dedicated part of the model.
Then a separate set of GT rules would be responsible
for (1) the detection of change and management of pre-
states and post-states (based on the difference between
Gpre and Gpost ) and (2) simulating the effect of a CDTS
(based on the difference between Gpost and RHS). As
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a consequence, both the underlying model and the rule
set would explode.

Without this special encoding, the GT rules are less
expressive as they take only the post-state into account
to determine which action to take while CD rules can
refer to the pre-state as well.

As a side remark, a CDTS can be constructed
even if the model transformation problem itself is non-
deterministic by its nature, thus it is not a function but
a relation between the source and target language (e.g.
a tree-based priority model needs to be flattened to an
arbitrary sequence respecting priority relations).

Analysis of change-driven transformations The main
practical relevance of this simulation property from
CDTS and GTS is that it enables to investigate tradi-
tional semantic properties like termination or determin-
ism using the rich theory of graph transformation sys-
tems. For instance, if the simulating GTS can be proved
to be terminating, then the original CDTS is terminat-
ing as well. As a consequence, many existing analysis
techniques of GTS are reusable for CDTSs.

Constraint detection by change-driven transformations
Declarative specifications (like graph patterns, graph
transformation rules, OCL constraints) are frequently
used for detecting the violation of well-formedness con-
straints in domain-specific models. However, constraints
related to the temporal behavior or the evolution of mod-
els are very hard to specify and detect as it requires
to explicitly encode the sequence of model snapshots as
part of the model, and thus also part of the constraint.
Change patterns provide a direct and succinct way to
detect a class of constraints related to the trajectory of
model evolution (see the case study of Sec.7).

8.2 Expressiveness wrt. model synchronization
languages

As CDT rules are unidirectional, CDT specifications can
be more complex than that of bidirectional approaches
(like TGG or QVT Relations) as two separate rule sets
are required. However, CDT specifications are also not
as complex as they appear to be at first sight. First,
the change pattern of a CDT rule compacts many dif-
ferent change trajectories, and only triggers for reaction
once a complex (aggregated) change has been detected
(disregarding the order of elementary changes). Further-
more, different changes requiring the same reaction can
be grouped together in one CDT rule.

Change patterns vs. elementary changes as guards. A
naive approach would be to use elementary change
events (e.g. element creation / deletion) as guards [14].
It is not a priori known which kind of elementary model

manipulation operation will eventually trigger a trans-
formation step. Therefore this low-level formalism forces
us to define a separate copy of the transformation rule
(or very complex disjunctive preconditions) for each pos-
sible triggering elementary change, and augment each
rule with a check to see whether the elementary change
really triggers the reaction. The high-level formalism of
change patterns can trigger reaction when a compound
event occurs, thus it significantly compacts the specifi-
cation of guards.

Change driven rules vs. triple graph grammars (TGGs).
While being probably more complex than TGGs, change
driven rules are also not as complex as they may seem.
First, change patterns correspond to many different
change trajectories, and only trigger for reaction once a
complex (aggregated) change has been detected (disre-
garding the order of elementary changes). Consequently,
traceability representation can be significantly simpli-
fied with respect to TGGs and QVT, since traceability
models are not required to contain complex information
about change trajectories (in contrast to e.g. [15]). Fi-
nally, triple graph grammars handle deletion of source
elements by fully revoking the effects of the correspond-
ing synchronization rules. As a result, the dependency
between TGG rules has a significant effect on which
parts of the target model need to be removed as a conse-
quent undo action. Change-driven transformations allow
a more fine-grained and explicit control for delete and
move operations in source models to significantly reduce
the amount of undos in the target model (by allowing
temporal inconsistencies, for instance).

Causality and dependency between CDT rules First,
causality and dependency between CDT rules can
be handled implicitly using some traceability links in
change patterns, which is conceptually similar to the
TGG approach, and it does not require the additional
use of when and where clauses as in QVT Relations.
However, dependency and reusability are offered on the
(change-)pattern level, thus complex main patterns, ap-
pearance and disappearance patterns can be assembled
using pattern composition. Furthermore, we may (imper-
atively) call an arbitrarily complex batch transformation
at any time as a reaction to a specific aggregated change.

In the future, we will further investigate how existing
MT languages can be translated into CDTs to further
reduce the complexity of CDT specifications in case of
model synchronization.

8.3 Practical discussion

From a practice-oriented viewpoint, we will investigate
(1) the traceability representation between source and
target models, (2) the representation of the pre-states
for model synchronization scenarios, (3) the handling of
non-materialized models.
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Traceability information The most apparent advantage
of change driven transformations compared to TGG or
QVT Relations is that they impose significantly weaker
assumptions on the nature of traceability models re-
quired during the transformation. Both TGGs and QVT
require a real mapping (correspondence) model to inter-
connect source and target models with typed traceability
links which need to be persisted either in a model store
(in case of TGG) or in the transformation context (in
case of QVT). In case of CDTs, traceability links can
be untyped, they can be stored in an external repository
(independently of the model store or the transformation
context), which may only persist the unique identifiers
of source and target model elements. As the extreme
case, traceability can also be provided on-the-fly by a
function (e.g. a naming convention or identifier map)
between the source and target models without persist-
ing traceability information to a dedicated store. As a
result, in case of CDTs, source and target models can be
almost fully detached from each other in case of model
synchronization scenarios using very simple traceability
links or on-the-fly, non-persisted traceability information
(traceability function).

Information about past In case of traditional declarative
model transformation approaches (like TGGs or QVT)
model synchronization is driven by the traceability in-
formation between the source and target models. For in-
stance, if a source (or target) element is freshly created,
it is detected by the lack of corresponding traceability
element. Alternatively, the deletion of a source (resp. tar-
get) element can be observed by a dangling traceability
element, which is only linked to a target (resp. source)
element. This means that a large amount of informa-
tion about the past is stored explicitly as part of the
traceability model in the model store (or transformation
context) in case of traditional model synchronization ap-
proaches. In case of CDTs, the effects of transactions
are propagated incrementally to the change patterns and
change-driven rules, and instead of storing information
about the past, it is the change in the match sets of
patterns and rules which can be observed to trigger syn-
chronization. Depending on the actual change scenarios,
CDTs significantly reduce what information needs to be
stored about the past in model synchronization problem.

Non-materialized models Traditional model transforma-
tion approaches typically assume that both source and
target models are materialized within a unified model
store (e.g. both models are EMF models). However, in
many practical tool integration scenarios, some models
can only be accessed in their own environment using
its dedicated API when duplicating such external mod-
els in an generic model store is not a viable option.
Change driven transformations can easily handle non-
materialized models based upon the caching of match sets

and the incremental processing of change information
provided by transaction logs.

9 Related Work

Now an overview is given on various approaches showing
similarity to our proposal.

Event-driven techniques Event-driven techniques, which
are the technological basis of change-driven model trans-
formations, have been used in many fields. In relational
database management systems (RDBMS), even the con-
cept of triggers [29] can be considered as simple opera-
tions whose execution is initiated by events. Later, event-
condition-action (ECA) rules [12] were introduced for
active database systems as a generalization of triggers,
and the same idea was adopted in rule engines [30] as
well. However, ECA-based approaches lack the support
for triggering by complex graph patterns, which is an
essential scenario in model-driven development.

High-level transformation specification. Event-driven
transformation specification can be avoided by using
very high-level transformation specification formalisms.
OMG’s Query/View/Transformation (QVT) specifica-
tion [31], in particular the Relations part, aims at declar-
atively defining a relation between corresponding source
and target models; it is up to an execution platform
to exert event-driven behavior in order to maintain this
model. While pointing out the advantages of such a so-
lution, [32] highlights issues with the ambiguity of inter-
pretation and implementation of QVT, in the context of
bidirectionality.

Inconsistency management Inconsistency management
systems aim at ensuring the consistency of multiple
views of a software, which is designed by several en-
gineers using tightly or loosely integrated tools. Views
can be formulated on different levels of abstraction, and
a bidirectional consistency of views is maintained by in-
consistency detection and resolution.

Since these systems should typically support informal
(e.g., natural language-based) descriptions as views, in-
consistency resolution can never be fully automated, and
manual user interaction in certain scenarios is unavoid-
ably required, in contrast to our approach, which auto-
matically propagates and transforms change descriptions
in a well-defined, rule-based way to the target domain
to avoid the appearance of inconsistencies in the target
model.

[33] presents a characteristic representative of incon-
sistency management systems, which records modifica-
tion histories in the form of (model-based) change de-
scription objects just like our approach. In contrast to
our solution, [33] additionally saves and stores the de-
tected inconsistencies for their possible resolution at a
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later time. The so-called grouping of inconsistencies in
this approach would possibly allow for reaching a goal
that is similar to the aim of pattern matching in the
current paper, however, in [33] grouping is only used for
presentation purposes, i.e., to create change and incon-
sistency lists for users to interact with.

[34] provides a conceptual architecture and prototype
for supporting traceability and inconsistency manage-
ment between software requirements descriptions, UML-
style use case models and black-box test plans. Rela-
tionships between high-level software artefacts are rep-
resented by traceability links, which can be defined man-
ually or in a semi-automated way. In contrast to our so-
lution, this approach supports change notifications on a
low abstraction level, it can transform only simple mod-
ifications automatically, while other changes still need
developer intervention.

In graph transformation, [23] presents an approach
for consistency management between abstract and con-
crete syntax representations of visual modeling lan-
guages. By their approach, the commands executed
through the user interface are explicitly materialized as
special command model elements and then processed
by triple graph grammar (TGG) rules. This approach
is a prime example for the ”controlled” change pro-
cessing scenario, where all possible editing operations
are a-priori known; in contrast, our technique primar-
ily targets non-controllable change processing (while we
also cover controllable change scenarios through domain-
specific command models).

[17] deals with consistency maintenance in UML
models. This paper proposes target incremental tech-
niques to efficiently detect inconsistencies and derive
proposed corrections; recommended changes are repre-
sented explicitly (such as ”DoesExist” and ”ShouldEx-
ist”). This approach is based on storing very detailed
traceability information about rule execution in order to
determine when and how a rule should be re-executed
for fixing inconsistences; in contrast, our approach is fo-
cused on reducing the amount of necessary information
persisted in models.

[15] presents a unidirectional, target incremental
batch transformation language for model synchroniza-
tion. Between two synchronization runs, the user may
modify the source as well as target models, and the sys-
tem will then propagate the changes incrementally, leav-
ing manual target modifications intact. This technique
again relies on massive amounts of information cached
in traceability models, by copying certain parts of the
source model intro traceability models.

Software evolution approaches Software evolution ap-
proaches, which focus on the temporal development of
system (meta)models, can be considered as a possible
application area of our approach, which could generate
deltas (for different modeling domains) as inputs for the
merging process required in software evolution. How-

ever, note that our approach does not further support
the merge conflict resolution subtask in any sense.

[6] lays down a wide-range terminology used in soft-
ware evolution. According to this framework, snap-
shot, command, and history scenarios of Section 2.1
directly correspond to state-based, forward and back-
ward delta approaches, respectively. Moreover, our solu-
tion can be categorized as an operation and intensional
change-based approach as model changes are explicitly
expressed as transformations, and they are independent
from the versions to which they are applied.

The FAMOOS project [35] whose aim was to build a
framework to support the evolution and reengineering of
object-oriented software systems used languages FAMIX
[36] and Hismo [37] for modeling purposes. More specifi-
cally, FAMIX is a language independent model of object-
oriented systems, which can be used for exchanging in-
formation between reengineering tools. FAMIX can be
considered as a simplified metamodel for class diagrams
without any support for describing changes. Hismo [37]
extends metamodels by adding a time layer on top of
the structural information, and it provides a common
infrastructure for expressing and combining evolution
and structural analyses. The additional time layer en-
ables Hismo to support version control and to calculate
changes of models, and in this sense, it could serve as
a source of input for our approach, but Hismo has no
metamodel for describing changes on a high abstraction
level.

Visualization tools in the FAMOOS framework use
side effect free OCL-based queries, which can even in-
volve constructs from the time layer, but these queries
are imperative from the viewpoint of structural con-
straint navigation, and they have been used for quan-
titative structural measurements (e.g., for counting the
number of changed methods), in contrast to our ap-
proach, which provides declarative graph patterns, which
are used to drive and initiate the transformation of
change descriptions. Additionally, the Goose tool in
FAMOOS uses Prolog rules to search for violations of
certain design guidelines. Prolog rules show similarity to
our graph patterns in their structure, however, our ap-
proach requires no conversion of underlying models, in
contrast to Goose, which can operate only on Prolog
facts that have to be extracted in advance from FAMIX
models.

[38] applies graph transformation for metamodel evo-
lution in domain-specific languages. In this approach,
GT rules evolve models in a metamodel compliance pre-
serving way. More specifically, they describe the changes
themselves inside a single modeling domain, but not the
transformation of changes between different domains as
in our solution. Moreover, [38] lacks live transformation
support.

Calculation of model correspondence and differences.
Frameworks such as AMW [39] allow discovering and
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representing hierarchical correspondences and differ-
ences between models. The approach presented by [40]
operates on a hierarchical traceability model to maintain
high- and low-level correspondence between models, and
outlines a mechanism for incrementally and efficiently
maintaining traceability relationships. This technology
can also be used to create transformations that incre-
mentally propagate changes to target models. The key
challenge of these approaches is establishing this corre-
spondence, using heuristics if necessary.

Calculating differences (deltas) of models has been
widely studied due to its important role in the process
of model editing, which requires undo and redo opera-
tions to be supported. In [41], metamodel independent
algorithms are proposed for calculating directed (back-
ward and forward) deltas, which can later be merged
with the initial model to produce the resulting model.
Unfortunately, the algorithms proposed by [41] for dif-
ference and merge calculation may only operate on a
single model, and they are not specified by model trans-
formation. In [42], a metamodel independent approach is
presented for visualizing backward and forward directed
deltas between consecutive versions of models. Differ-
ences (i.e., change history models) have a model-based
representation (similarly to [43]), and calculations are
driven by (higher order) transformations in both [42]
and our approach. However, in contrast to [42] and [43],
our current proposal is applicable even in an exogeneous
transformation context to propagate change descriptions
from source to target models.

Incremental synchronization for exogeneous model trans-
formations. Incremental synchronization approaches al-
ready exist in model-to-model transformation context
(e.g., [44]). One representative direction is to use triple
graph grammars [45] for maintaining the consistency of
source and target models in a rule-based manner. The
proposal of [46] relies on various heuristics of the corre-
spondence structure. Dependencies between correspon-
dence nodes are stored explicitly, which drives the incre-
mental engine to undo an applied transformation rule in
case of inconsistencies. Other triple graph grammar ap-
proaches for model synchronization (e.g., [47]) do not ad-
dress incrementality. Triple graph grammar techniques
are also used in [48] for tool integration based on UML
models. The aim of the approach is to provide support
for change synchronization between various languages
in several development phases. Based on an integration
algorithm, the system merges changed models on user
request. In this sense, contrarily to our solution, none of
these approaches performs live transformation, but such
a technique could possibly be easily integrated into these
tools as well.

The approach of [49] shows the largest similarity to
our proposal as both (i) focus on change propagation
in the context of model-to-model transformation, (ii)
describe changes in a model-based and metamodel in-

dependent way, and (iii) use rule-driven algorithms for
propagating changes of source models to the target side.
In the proposal of [49] target model must be materialized
and they can also be manually modified, which results
in a complex merge operation to be performed to get
the derived model. In contrast, our algorithms can be
used on non-materialized target models, and the derived
models are computed automatically on the target side.

10 Conclusion and Future Work

In the paper, we discussed change-driven transforma-
tions, which is a novel class of model transformations
aiming to process or derive changes as their input
or output. We presented a novel language for speci-
fying change-driven transformations extending a well-
established graph transformation language. We also out-
lined how the same language can be executed in different
change scenarios by adapting incremental graph pattern
matching engines.

Note that the scenarios discussed in the paper are
important but not the only potential application fields
of change-driven transformations. In addition to the
model synchronization and evolutionary constraints case
studies, we have an extended set of applications using
CDTs as underlying formalism for the semantic back-
annotation of model transformations driven by execution
traces [50].

A primary focus for future work is to elaborate how
change-driven transformations can serve as an inter-
mediate language for the efficient execution of existing
model transformation used for bidirectional model syn-
chronization languages (like TGGs or QVT relations,
and maybe also ATL). Moreover, it is also worth in-
vestigating if our change patterns language can be ex-
tended to the action part to allow the implicit derivation
of change models as output of change-driven rules. Fur-
thermore, we also intend to investigate the correctness
and consistency checking of change-driven transforma-
tions. Finally, we also aim at using change models for
model merging.
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Proc. of the 12th International Conference on Model
Driven Engineering Languages and Systems. Volume
5795 of Lecture Notes in Computer Science., Denver, Col-
orado, USA, Springer (October 2009) 706–711

39. Fabro, M.D.D., Bezivin, J., Jouault, F., Breton, E.,
Gueltas, G.: AMW: a generic model weaver. In: Pro-
ceedings of the 1ère Journée sur l’Ingénierie Dirigée par
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in the large. In: ESEC-FSE ’07: Proceedings of European
Software Engineering Conference, New York, NY, USA,
ACM (2007) 285–294

48. Becker, S.M., Haase, T., Westfechtel, B.: Model-based a-
posteriori integration of engineering tools for incremental
development processes. Software and Systems Modeling
4(2) (May 2005) 123–140

49. Jimenez, A.M.: Change propagation in the MDA: A
model merging approach. Master’s thesis, The University
of Queensland (June 2005)
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A Basics Concepts of Graph Transformation

A.1 Graph Patterns

The central concept of GT is the notion of graph pat-
terns, which are basically small graphs. Pattern match-
ing is the (computationally complex) process of identi-
fying subgraphs in the graph model G that correspond
to the pattern. More formally, a pattern P 〈V,C〉 con-
tains a set V of pattern variables with some graph con-
straints C attached to them; a pattern match is a map-
ping m : V → G of all pattern variables to model el-
ements so that the image of the variables observes all
constraints. The most important constraints are entity
constraints stating that a variable is a node of a certain
type, and relation constraints stating that a variable is
an edge of a certain type, connecting two given variables.

Definition 6 (Graph Model) A graph model
over a type system Type is a structure G =
〈Ent,Rel, src, trg, typ〉 where Ent is a set of enti-
ties (graph nodes), Rel is a set of relations (graph
edges); src, trg : Rel → Ent maps the relations to
their source and target entities, respectively; and the
typing of elements is typ : GE → Type where GE is an
abbreviation for the set of graph elements Ent

⋃
Rel.

Our graph model assumes that each entity and relation
takes its type from a type system which is simplified
here to a set of predefined types. The notion of type
compatibility is beyond the scope of this paper. Various
other model features such as containment are omitted
here for brevity. It is also possible to represent hyper-
graphs, where there are more than two incidence maps
instead of just src and trg.
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Definition 7 (Graph Pattern) A graph pattern P =
〈V,C〉 over a type system Type contains a set of pat-
tern variables V , and a set of graph constraints C =
Cent

⋃
Crel attached to them. V is partitioned into en-

tity variables V ent and relation variables V rel. Entity
constraints Cent ⊆ V ent × Type state that a variable is
a node of a certain type. Relation constraints Crel ⊆
V × V rel × V × Type state that a variable is an edge of
a certain type, connecting two given variables represent-
ing the source and the target of the edge. To identify the
variables and constraints of a specific pattern P , we use
V (P ) and C(P ), respectively.

The pattern language [11] of the Viatra2 tool also per-
mits additional constraints such as containment, equal-
ity and inequality, or pattern composition, which are not
detailed here.

Definition 8 (Graph Pattern Match) A substitu-
tion s : P → G of a graph pattern P = 〈V,C〉 in a graph
model G = 〈Ent,Rel, src, trg, typ〉 over a type system
Type is a set of variable assignments asgn ∈ V × GE,
one for each variable v ∈ V . Let s(v) ∈ GE denote the
model element assigned by s to the variable v ∈ V .

A substitution satisfies an entity constraint c =
〈v, t〉 ∈ Cent iff typ(s(v)) is compatible with t. A substi-
tution satisfies a relation constraint c = 〈a, v, b, t〉 ∈ Crel

iff src(s(v)) = s(a) and trg(s(v)) = s(b) and typ(s(v))
is compatible with t.

A match m : P → G is a substitution that satisfies
all constraints c ∈ C of P , which will be denoted by
G,m |= P .

Remark: from now on, we assume that a single type
system Type is given, and will not include it in each
further definition.

A negative application condition (NAC, indicated by
the neg keyword) prescribes contextual conditions that,
if satisfiable, invalidate a match of the pattern.

Definition 9 (Graph Pattern with Negative Ap-
plication Condition) A pattern with NAC is PN =
〈P,N∗〉 where P = 〈V,C〉 is a (positive) graph pat-
tern, and N∗ is a set of negative application conditions
Ni = 〈Vi, Ci〉, each being a well-formed graph pattern,
such that P ⊆ Ni meaning that V ⊆ Vi and C ⊆ Ci.

Commonly, only the subpattern N̂i = Ni \ P is explic-
itly indicated and depicted in figures and code extracts,
which is defined as N̂i = 〈V̂i, Ĉi〉, where Ĉi = Ci \C and
V̂i ⊆ Vi is the set of variables involved in Ĉi.

Definition 10 (Match of Graph Pattern with
NAC) A match m : PN → G of PN = 〈P,N∗〉 in graph
model G is a match of the positive pattern G,m |= P ,
where there is no Ni ∈ N∗ and match mi : Ni → G
such that m ⊆ mi (meaning that mi(v) = m(v) for all v
variables of P ).

Some systems even permit NACs to have NACs of
their own; if there is no limit on the number of nega-
tions that can be nested within each other, graph pat-
terns (without attribute constraints) become expres-
sively equivalent to first order formulae over the pred-
icates describing the graph model [51].

A.2 Attributed Systems

Definition 11 (Attributed Graph Model) An at-
tributed graph over a domain Dom of attribute values
is a graph model G = 〈Ent,Rel, src, trg, typ〉 where Ent
is partitioned into EntMod ·∪Dom. Dom is the immutable
and infinite set of all attribute values (integers, strings,
etc.), having special attribute types. EntMod is called the
set of model entities. Rel is partitioned into three sets.
RelMod = { r ∈ Rel|src(r), trg(r) ∈ EntMod } is the set
of model relations. RelDom = { r ∈ Rel|src(r), trg(r) ∈
Dom } is the immutable and infinite set of relations
between domain values, having types such as ordering,
substring etc. Operators (multiplication, concatenation,
etc.) can also be represented in hypergraphs, or with aux-
iliary nodes. RelV al = Rel \ (RelMod

⋃
RelDom) is the

set of value assignment relations that assign attribute
values to model entities; their types correspond to dif-
ferent attribute names. Assignment relations point from
the model entity to the domain value, and have a many-
to-one multiplicity for each attribute name.

Obviously, implementations will only manifest a subset
of Dom, such as trg(RelV al). Similarly RelDom arcs are
typically not stored, but it is assumed that the existence
of a domain relation with given nodes and type is eas-
ily decidable. Some types of RelDom relations might be
function-like, meaning that one (or more) of their inci-
dent nodes can be efficiently deduced from the others
(e.g. the value of a product is derivable from the value
of its factors).

The fact that r ∈ RelV al(G) where src(r) = obj,
trg(r) = val and typ(r) = attr can also be denoted as
G |= obj.attr = val.

Definition 12 (Graph Pattern with Attributes)
In attributed systems, V ent of a graph pattern is fur-
ther partitioned into model and domain entity variables
(V ent

Mod and V ent
Dom), Their corresponding constraints are

Cent
Mod ⊆ V ent

Mod × Type expressing that a variable rep-
resents a model node of a certain type and Cent

Dom ⊆
V ent
Dom × Type asserting attribute types such as integer.

Similarly V rel is partitioned into three sets: model rela-
tions V rel

Mod between model elements, value assignments
V rel
V al that connect model elements to their attribute val-

ues, and domain relations V rel
Dom between attribute val-

ues, each sort with a unique type of relation constraint.
Crel

Mod ⊆ VMod × V rel
Mod × VMod × Type expresses that the

variable represent a model edge of a certain type. Crel
V al ⊆

VMod×V rel
V al×VDom×Type means that a certain value as-

signment, associated with an attribute name (taken from



Change-Driven Model Transformations 29

Type), links a model variable to a domain variable as its
attribute value. Crel

Dom ⊆ VDom × V rel
Dom × VDom × Type

basically means an attribute constraint check among the
variables corresponding to attribute values.

As graph pattern matchers are not required to be equa-
tion solvers or constraint engines, and the entirety of
Dom cannot be manifested, some systems require at-
tributed patterns to be formalized in such a way that
matches can actually be computed from the model. A
graph pattern is matchable iff each domain entity vari-
able v ∈ V ent

Dom is bound either as the attribute value of
a model element variable, or as the result of functions
(e.g. addition) on bound variables; and its NACs are also
matchable.

A.3 Graph Transformation

The mathematical formalism of Graph Transformation
(GT) [8] provides a high-level rule and pattern-based
manipulation language for graph models.

Definition 13 (Graph Transformation Rule)
Graph transformation rules GTR = 〈LHS,RHS〉 are
specified by two graph patterns: a precondition (or
left-hand side) pattern (with NAC) LHS defining the
applicability of the rule, and a postcondition (or right-
hand side) positive pattern RHS which declaratively
specifies the result model after rule application. The
variable sets of LHS and RHS are allowed to intersect.

When the rule is applied on a match of the LHS, ele-
ments that are present only in (the image of) the LHS are
deleted, elements that are present only in the RHS are
created, and other model elements remain unchanged.

Definition 14 (Application of Graph Transforma-
tion Rule) A graph transformation rule GTR =
〈LHS,RHS〉 can be applied on a match m : LHS → G
in a graph model G as follows:

– Deletion. For each v ∈ VLHS \ VRHS, the model
element m(v) is deleted.

– Creation. For each v ∈ VRHS \ VLHS, a new model
element is created and assigned to v in a way that
RHS becomes satisfied (i.e. the new element is cre-
ated in a type-conforming and structurally consistent
way).

If LHS has no matches in G, then GTR is not applica-
ble.

For conciseness, certain effects (varying within GT tools)
such as deletion of dangling edges, edge redirecting, etc.
were omitted from the formal definition. Note that this
core formalism of GT rules does not define how to re-
act to changes, which is the subject of Section 4. In at-
tributed graphs, domain entities and relations obviously
cannot be modified, but the creation or deletion of value
assignment edges is interpreted as updating the value of
attributes. Once again, this is a simplified overview and
is by far not universal to GT systems.

Example. As an illustration, Figure 24 shows a GT rule
that is applied on invocation nodes that have not yet
been mapped to a jPDL node (see LHS, same as Fig-
ure 6(a)), and creates the jPDL counterpart when ap-
plied (see RHS). Similarly, a GT rule responsible for
mapping transitions is demonstrated by Figure 25, as
well as Listing 4 (reusing the previously shown pattern as
LHS). These two rules together transform the sequence
of invocations in the workflow. Further rules, omitted in
this paper, are required to deal with the attributes of in-
vocations, and transform the rest of workflow elements.

Fig. 24 Example GT Rule for mapping invocations

Fig. 25 Example GT Rule for mapping transitions

gtrule mapTrfromWFtoJPDL(I1, N1, I2 , N2 , JT) =
{
precondition find noJPDLTr(I1, N1, I2, N2);
postcondition pattern mapped(I1, N1, I2, N2, JT) =
{
Invocation(I1);
traceability(ItoN1 , I1, N1);
JPDLNode(N1);
JPDLTransition(JT) in N1;
JPDLTransition.to(To, JT , N2);
JPDLNode(N2);
traceability(ItoN2 , I2, N2);
Invocation(I2);
Invocation.transition(Tr, I1, I2);

}
}

Listing 4 Example Graph Transformation Rule


